218 research outputs found

    Vector field localization and negative tension branes

    Full text link
    It is shown that negative tension branes in higher dimensions may lead to an effective lower dimensional theory where the gauge-invariant vector fields associated with the fluctuations of the metric are always massless and localized on the brane. Explicit five-dimensional examples of this phenomenon are provided. Furthermore, it is shown that higher dimensional gauge fields can also be localized on these configurations with the zero mode separated from the massive tower by a gap.Comment: 16 pages, LaTeX style; to appear in Phys. Rev.

    Constraints on the Bulk Standard Model in the Randall-Sundrum Scenario

    Full text link
    We derive constraints on the Randall-Sundrum scenario with the standard model fields in the bulk. These result from tree level effects associated with the deformation of the zero mode wave-functions of the W and the Z once electroweak symmetry is broken. Recently Cs\'{a}ki, Erlich and Terning pointed out that this implies large contributions to electroweak oblique parameters. Here we find that when fermions are allowed in the bulk the couplings of the WW and the ZZ to zero-mode fermions are also affected. We perform a fit to electroweak observables assuming universal bulk fermion masses and including all effects and find constraints that are considerably stronger than for the case with fermions localized in the low energy boundary. These put the lowest Kaluza-Klein excitation out of reach of the Large Hadron Collider. We then relax the universality assumption and study the effects of flavor violation in the bulk and its possible signatures.Comment: 18 pages, 2 ps figure

    The Effective Lagrangian in the Randall-Sundrum Model and Electroweak Physics

    Full text link
    We consider the two-brane Randall-Sundrum (RS) model with bulk gauge fields. We carefully match the bulk theory to a 4D low-energy effective Lagrangian. In addition to the four-fermion operators induced by KK exchange we find that large negative S and T parameters are induced in the effective theory. This is a tree-level effect and is a consequence of the shapes of the W and Z wave functions in the bulk. Such effects are generic in extra dimensional theories where the standard model (SM) gauge bosons have non-uniform wave functions along the extra dimension. The corrections to precision electroweak observables in the RS model are mostly dominated by S. We fit the parameters of the RS model to the experimental data and find somewhat stronger bounds than previously obtained; however, the standard model bound on the Higgs mass from precision measurements can only be slightly relaxed in this theory.Comment: 16 pages, LaTeX, 1 figure included, uses JHEP.cls, extended introduction, added reference

    Precision Electroweak Data and Unification of Couplings in Warped Extra Dimensions

    Full text link
    Warped extra dimensions allow a novel way of solving the hierarchy problem, with all fundamental mass parameters of the theory naturally of the order of the Planck scale. The observable value of the Higgs vacuum expectation value is red-shifted, due to the localization of the Higgs field in the extra dimension. It has been recently observed that, when the gauge fields propagate in the bulk, unification of the gauge couplings may be achieved. Moreover, the propagation of fermions in the bulk allows for a simple solution to potentially dangerous proton decay problems. However, bulk gauge fields and fermions pose a phenomenological challenge, since they tend to induce large corrections to the precision electroweak observables. In this article, we study in detail the effect of gauge and fermion fields propagating in the bulk in the presence of gauge brane kinetic terms compatible with gauge coupling unification, and we present ways of obtaining a consistent description of experimental data, while allowing values of the first Kaluza Klein mode masses of the order of a few TeV.Comment: 32 pages, 7 figures. References adde

    Opaque Branes in Warped Backgrounds

    Get PDF
    We examine localized kinetic terms for gauge fields which can propagate into compact, warped extra dimensions. We show that these terms can have a relevant impact on the values of the Kaluza-Klein (KK) gauge field masses, wave functions, and couplings to brane and bulk matter. The resulting phenomenological implications are discussed. In particular, we show that the presence of opaque branes, with non-vanishing brane-localized gauge kinetic terms, allow much lower values of the lightest KK mode than in the case of transparent branes. Moreover, we show that if the large discrepancies among the different determinations of the weak mixing angle would be solved in favor of the value obtained from the lepton asymmetries, bulk electroweak gauge fields in warped-extra dimensions may lead to an improvement of the agreement of the fit to the electroweak precision data for a Higgs mass of the order of the weak scale and a mass of the first gauge boson KK excitation most likely within reach of the LHC.Comment: 37 pages, 12 figures, improved analysis of the precision electroweak constraint

    Flavour Universal Dynamical Electroweak Symmetry Breaking

    Get PDF
    The top condensate see-saw mechanism of Dobrescu and Hill allows electroweak symmetry to be broken while deferring the problem of flavour to an electroweak singlet, massive sector. We provide an extended version of the singlet sector that naturally accommodates realistic masses for all the standard model fermions, which play an equal role in breaking electroweak symmetry. The models result in a relatively light composite Higgs sector with masses typically in the range of (400-700)~GeV. In more complete models the dynamics will presumably be driven by a broken gauged family or flavour symmetry group. As an example of the higher scale dynamics a fully dynamical model of the quark sector with a GIM mechanism is presented, based on an earlier top condensation model of King using broken family gauge symmetry interactions (that model was itself based on a technicolour model of Georgi). The crucial extra ingredient is a reinterpretation of the condensates that form when several gauge groups become strong close to the same scale. A related technicolour model of Randall which naturally includes the leptons too may also be adapted to this scenario. We discuss the low energy constraints on the massive gauge bosons and scalars of these models as well as their phenomenology at the TeV scale.Comment: 22 pages, 3 fig

    Constraints on Masses of Charged PGBs in Technicolor Model from Decay bsγ b \to s \gamma

    Full text link
    In this paper we calculate the contributions to the branching ratio of BXsγB\to X_s \gamma from the charged Pseudo-Goldstone bosons appeared in one generation Technicolor model. The current CLEOCLEO experimental results can eliminate large part of the parameter space in the m(P±)m(P8±)m(P^\pm) - m(P_8^\pm) plane, and specifically, one can put a strong lower bound on the masses of color octet charged PGBs P8±P_8^\pm: m(P8±)>400  GeVm(P^{\pm}_8) > 400\;GeV at 90%C.L90\%C.L for free m(P±)m(P^{\pm}).Comment: 9 pages, 3 figures(uuencoded), Minor changes(Type error), to appear in Phys. Rev.

    Higgsless Theory of Electroweak Symmetry Breaking from Warped Space

    Full text link
    We study a theory of electroweak symmetry breaking without a Higgs boson, recently suggested by Csaki et al. The theory is formulated in 5D warped space with the gauge bosons and matter fields propagating in the bulk. In the 4D dual picture, the theory appears as the standard model without a Higgs field, but with an extra gauge group G which becomes strong at the TeV scale. The strong dynamics of G breaks the electroweak symmetry, giving the masses for the W and Z bosons and the quarks and leptons. We study corrections in 5D which are logarithmically enhanced by the large mass ratio between the Planck and weak scales, and show that they do not destroy the structure of the electroweak gauge sector at the leading order. We introduce a new parameter, the ratio between the two bulk gauge couplings, into the theory and find that it allows us to control the scale of new physics. We also present a potentially realistic theory accommodating quarks and leptons and discuss its implications, including the violation of universality in the W and Z boson couplings to matter and the spectrum of the Kaluza-Klein excitations of the gauge bosons. The theory reproduces many successful features of the standard model, although some cancellations may still be needed to satisfy constraints from the precision electroweak data.Comment: 17 pages, Latex; important correction in discussions on effects from brane terms, reference adde

    RS1, Custodial Isospin and Precision Tests

    Full text link
    We study precision electroweak constraints within a RS1 model with gauge fields and fermions in the bulk. The electroweak gauge symmetry is enhanced to SU(2)_L \times SU(2)_R \times U(1)_{B-L}, thereby providing a custodial isospin symmetry sufficient to suppress excessive contributions to the T parameter. We then construct complete models, complying with all electroweak constraints, for solving the hierarchy problem, without supersymmetry or large hierarchies in the fundamental couplings. Using the AdS/CFT correspondence our models can be interpreted as dual to a strongly coupled conformal Higgs sector with global custodial symmetry, gauge and fermionic matter being fundamental fields external to the CFT. This scenario has interesting collider signals, distinct from other RS models in the literature.Comment: 32 pages, 6 figures, latex2e, minor changes, references adde

    Fermions on an Interval: Quark and Lepton Masses without a Higgs

    Full text link
    We consider fermions on an extra dimensional interval. We find the boundary conditions at the ends of the interval that are consistent with the variational principle, and explain which ones arise in various physical circumstances. We apply these results to higgsless models of electroweak symmetry breaking, where electroweak symmetry is not broken by a scalar vacuum expectation value, but rather by the boundary conditions of the gauge fields. We show that it is possible to find a set of boundary conditions for bulk fermions that would give a realistic fermion mass spectrum without the presence of a Higgs scalar, and present some sample fermion mass spectra for the standard model quarks and leptons as well as their resonances.Comment: LaTeX, 36 pages, 5 figure
    corecore