863 research outputs found

    Classical Nucleation Theory of the One-Component Plasma

    Full text link
    We investigate the crystallization rate of a one-component plasma (OCP) in the context of classical nucleation theory. From our derivation of the free energy of an arbitrary distribution of solid clusters embedded in a liquid phase, we derive the steady-state nucleation rate of an OCP as a function of the Coulomb coupling parameter. Our result for the rate is in accord with recent molecular dynamics simulations, but it is greater than that of previous analytical estimates by many orders of magnitude. Further molecular dynamics simulations of the nucleation rate of a supercooled liquid OCP for several values of the coupling parameter would clarify the physics of this process.Comment: 6 pages, 1 figure, accepted by PR

    A Novel Massage Therapy Technique for Management of Chronic Cervical Pain: A Case Series

    Get PDF
    Background: Neck pain is a generalized condition resulting from a complex etiology with presentation of a wide variety of symptoms. Neck pain is most often accompanied by decreased range of motion (ROM), muscle and joint stiffness, and limitations in functional capabilities. This condition may result in significant personal and societal burden. Purpose: We evaluated the effectiveness of a novel massage therapy intervention by following the treatment regimen and outcomes of two patients experiencing chronic neck pain. Participants: Two patients (46 and 53 years old) experienced chronic (>5 years) neck pain. Both patients reported pain, limited ROM, and muscle and joint stiffness. Additionally, the first patient reported a lack of sleep, and both patients stated their pain interfered with their quality of life and activities of daily living. Intervention: Patients received the Integrative Muscular Movement Technique (IMMT) intervention approximately twice a week for a total of eight treatments, each approximately 20 minutes in duration. Results: Both patients experienced a reduction in pain and an increase in cervical ROM in flexion, extension, rotation, and sidebending. The first patient also reported an increased ability to sleep. Both patients reported an increased ability to perform activities of daily living, including work-related responsibilities. Conclusions: For the two patients included in this report, therapist observations and patient reports indicate that inclusion of the IMMT treatment in a treatment regimen for chronic neck pain may lead to decreased pain and increased cervical ROM. These positive effects of the IMMT intervention may have a role in enhancing functional outcomes of these patients

    Theoretical Models of Superbursts on Accreting Neutron Stars

    Full text link
    We carry out a general-relativistic global linear stability analysis of the amassed carbon fuel on the surface of an accreting neutron star to determine the conditions under which superbursts occur. We reproduce the general observational characteristics of superbursts, including burst fluences, recurrence times, and the absence of superbursts on stars with accretion rates below 10% of the Eddington limit. By comparing our results with observations, we are able to set constraints on neutron star parameters such as the stellar radius and neutrino cooling mechanism in the core. Specifically, we find that accreting neutron stars with ordered crusts and highly efficient neutrino emission in their cores (due to direct URCA or pionic reactions, for example) produce extremely energetic (> 10^44 ergs) superbursts which are inconsistent with observations, in agreement with previous investigations. Also, because of pycnonuclear burning of carbon, they do not have superbursts in the range of accretion rates at which superbursts are actually observed unless the crust is very impure. Stars with less efficient neutrino emission (due to modified URCA reactions, for example) produce bursts that agree better with observations. Stars with highly inefficient neutrino emission in their cores produce bursts that agree best with observations. All systems that accrete primarily hydrogen and in which superbursts are observed show evidence of H- and He-burning delayed mixed bursts. We speculate that delayed mixed bursts provide sufficient amounts of carbon fuel for superbursts and are thus a prerequisite for having superbursts. We compare our global stability analysis to approximate one-zone criteria used by other authors and identify a particular set of approximations that give accurate results for most choices of parameters. (abstract truncated)Comment: 43 pages, 18 figures, accepted by Ap

    Ignition column depths of helium-rich thermonuclear bursts from 4U 1728-34

    Full text link
    We analysed thermonuclear (type-I) X-ray bursts observed from the low-mass X-ray binary 4U1728-34 by RXTE, Chandra and INTEGRAL. We compared the variation in burst energy and recurrence times as a function of accretion rate with the predictions of a numerical ignition model including a treatment of the heating and cooling in the crust. We found that the measured burst ignition column depths are significantly below the theoretically predicted values, regardless of the assumed thermal structure of the neutron star interior. While it is possible that the accretion rate measured by Chandra is underestimated, due to additional persistent spectral components outside the sensitivity band, the required correction factor is typically 3.6 and as high as 6, which is implausible. Furthermore, such underestimation is even more unlikely for RXTE and INTEGRAL, which have much broader bandpasses. Possible explanations for the observed discrepancy include shear-triggered mixing of the accreted helium to larger column depths, resulting in earlier ignition, or the fractional covering of the accreted fuel on the neutron star surface.Comment: 12 pages, 5 figures, accepted for publication in Ap

    The Latitude of Type I X-Ray Burst Ignition on Rapidly Rotating Neutron Stars

    Get PDF
    We investigate the latitude at which type I X-ray bursts are ignited on rapidly rotating accreting neutron stars. We find that, for a wide range of accretion rates, ignition occurs preferentially at the equator, in accord with the work of Spitkovsky et al. However, for a range of accretion rates below the critical rate above which bursts cease, ignition occurs preferentially at higher latitudes. The range of accretion rates over which nonequatorial ignition occurs is an increasing function of the neutron star spin frequency. These findings have significant implications for thermonuclear flame propagation, and they may explain why oscillations during the burst rise are detected predominantly when the accretion rate is high. They also support the suggestion of Bhattacharyya & Strohmayer that non-photospheric radius expansion double-peaked bursts and the unusual harmonic content of oscillations during the rise of some bursts result from ignition at or near a rotational pole.Comment: 4 pages, 2 figures, accepted by ApJ

    Gauge-invariant fluctuations of scalar branes

    Get PDF
    A generalization of the Bardeen formalism to the case of warped geometries is presented. The system determining the gauge-invariant fluctuations of the metric induced by the scalar fluctuations of the brane is reduced to a set of Schr\"odinger-like equations for the Bardeen potentials and for the canonical normal modes of the scalar-tensor action. Scalar, vector and tensor modes of the geometry are classified according to four-dimensional Lorentz transformations. While the tensor modes of the geometry live on the brane determining the corrections to Newton law, the scalar and and vector fluctuations exhibit non normalizable zero modes and are, consequently, not localized on the brane. The spectrum of the massive modes of the fluctuations is analyzed using supersymmetric quantum mechanics.Comment: 29 pages in Latex styl
    corecore