4,684 research outputs found
Low-power photothermal self-oscillation of bimetallic nanowires
We investigate the nonlinear mechanics of a bimetallic, optically absorbing
SiN-Nb nanowire in the presence of incident laser light and a reflecting Si
mirror. Situated in a standing wave of optical intensity and subject to
photothermal forces, the nanowire undergoes self-induced oscillations at low
incident light thresholds of due to engineered strong
temperature-position (-) coupling. Along with inducing self-oscillation,
laser light causes large changes to the mechanical resonant frequency
and equilibrium position that cannot be neglected. We present
experimental results and a theoretical model for the motion under laser
illumination. In the model, we solve the governing nonlinear differential
equations by perturbative means to show that self-oscillation amplitude is set
by the competing effects of direct - coupling and parametric
excitation due to - coupling. We then study the linearized
equations of motion to show that the optimal thermal time constant for
photothermal feedback is rather than the widely reported
. Lastly, we demonstrate photothermal quality factor ()
enhancement of driven motion as a means to counteract air damping.
Understanding photothermal effects on micromechanical devices, as well as
nonlinear aspects of optics-based motion detection, can enable new device
applications as oscillators or other electronic elements with smaller device
footprints and less stringent ambient vacuum requirements.Comment: New references adde
Fluctuations and oscillations in a simple epidemic model
We show that the simplest stochastic epidemiological models with spatial
correlations exhibit two types of oscillatory behaviour in the endemic phase.
In a large parameter range, the oscillations are due to resonant amplification
of stochastic fluctuations, a general mechanism first reported for
predator-prey dynamics. In a narrow range of parameters that includes many
infectious diseases which confer long lasting immunity the oscillations persist
for infinite populations. This effect is apparent in simulations of the
stochastic process in systems of variable size, and can be understood from the
phase diagram of the deterministic pair approximation equations. The two
mechanisms combined play a central role in explaining the ubiquity of
oscillatory behaviour in real data and in simulation results of epidemic and
other related models.Comment: acknowledgments added; a typo in the discussion that follows Eq. (3)
is corrected
Pulsive feedback control for stabilizing unstable periodic orbits in a nonlinear oscillator with a non-symmetric potential
We examine a strange chaotic attractor and its unstable periodic orbits in
case of one degree of freedom nonlinear oscillator with non symmetric
potential. We propose an efficient method of chaos control stabilizing these
orbits by a pulsive feedback technique. Discrete set of pulses enable us to
transfer the system from one periodic state to another.Comment: 11 pages, 4 figure
Overwinter fasting and re-feeding in rainbow trout: plasma growth hormone and cortisol levels in relation to energy mobilization
This study investigated the roles of cortisol and growth hormone during a period of fasting in overwintering salmonid fish. Indices of carbohydrate (plasma glucose, liver glycogen), lipid (plasma free fatty acids) and protein metabolism (plasma protein, total plasma amino acids) were determined, together with plasma growth hormone (GH), cortisol and somatolactin levels (SL) at intervals in three groups of rainbow trout (continuously fed; fasted for 9 weeks then fed; fasted for 17 weeks). In fasted fish, a decline in body weight and condition factor was accompanied by reduced plasma glucose and hepatic glycogen and increased plasma FFA. No consistent elevation of plasma GH occurred until after 8 weeks of fasting when plasma GH levels increased nine-fold. No changes were observed in plasma total protein and AA until between weeks 13 and 17 when both were reduced significantly. When previously fasted fish resumed feeding, plasma glucose and FFA, and hepatic glycogen levels rapidly returned to control values and weight gain resumed. No significant changes in plasma cortisol levels, related to feeding regime, were evident at any point during the study and there was no evidence that SL played an active role in the response to fasting. The results suggest that overwinter fasting may not represent a significant nutritional stressor to rainbow trout and that energy mobilisation during fasting may be achieved without the involvement of GH, cortisol or SL
Benevolent characteristics promote cooperative behaviour among humans
Cooperation is fundamental to the evolution of human society. We regularly
observe cooperative behaviour in everyday life and in controlled experiments
with anonymous people, even though standard economic models predict that they
should deviate from the collective interest and act so as to maximise their own
individual payoff. However, there is typically heterogeneity across subjects:
some may cooperate, while others may not. Since individual factors promoting
cooperation could be used by institutions to indirectly prime cooperation, this
heterogeneity raises the important question of who these cooperators are. We
have conducted a series of experiments to study whether benevolence, defined as
a unilateral act of paying a cost to increase the welfare of someone else
beyond one's own, is related to cooperation in a subsequent one-shot anonymous
Prisoner's dilemma. Contrary to the predictions of the widely used inequity
aversion models, we find that benevolence does exist and a large majority of
people behave this way. We also find benevolence to be correlated with
cooperative behaviour. Finally, we show a causal link between benevolence and
cooperation: priming people to think positively about benevolent behaviour
makes them significantly more cooperative than priming them to think
malevolently. Thus benevolent people exist and cooperate more
HALOGAS observations of NGC 5023 and UGC 2082: Modeling of non-cylindrically symmetric gas distributions in edge-on galaxies
In recent years it has become clear that the vertical structure of disk
galaxies is a key ingredient for understanding galaxy evolution. In particular,
the presence and structure of extra-planar gas has been a focus of research.
The Hydrogen Accretion in LOcal GAlaxieS (HALOGAS) survey aims to provide a
census on the rate of cold neutral gas accretion in nearby galaxies as well as
a statistically significant set of galaxies that can be investigated for their
extra-planar gas properties.
In order to better understand the the vertical structure of the neutral
hydrogen in the two edge-on HALOGAS galaxies NGC 5023 and UGC 2082 we construct
detailed tilted ring models. The addition of distortions resembling arcs or
spiral arms significantly improves the fit of the models to these galaxies. In
the case of UGC 2082 no vertical gradient in rotational velocity is required in
either symmetric models nor non-symmetric models to match the observations. The
best fitting model features two arcs of large vertical extent that may be due
to accretion. In the case of NGC 5023 a vertical gradient is required in
symmetric models (dV/dz = km s kpc) and its
magnitude is significantly lowered when non-symmetric models are considered
(dV/dz = km s kpc). Additionally it is shown that the
underlying disk of NGC 5023 can be made symmetric, in all parameters except the
warp, in non-symmetric models. In comparison to the "classical" modeling these
models fit the data significantly better with a limited addition of free
parameters.Comment: 27 Pages, 22 Figures. Accepted for publication in MNRA
Indirect reciprocity and the evolution of prejudicial groups
Prejudicial attitudes are widely seen between human groups, with significant consequences. Actions taken in light of prejudice result in discrimination, and can contribute to societal division and hostile behaviours. We define a new class of group, the prejudicial group, with membership based on a common prejudicial attitude towards the out-group. It is assumed that prejudice acts as a phenotypic tag, enabling groups to form and identify themselves on this basis. Using computational simulation, we study the evolution of prejudicial groups, where members interact through indirect reciprocity. We observe how cooperation and prejudice coevolve, with cooperation being directed in-group. We also consider the co-evolution of these variables when out-group interaction and global learning are immutable, emulating the possible pluralism of a society. Diversity through three factors is found to be influential, namely out-group interaction, out-group learning and number of sub-populations. Additionally populations with greater in-group interaction promote both cooperation and prejudice, while global rather than local learning promotes cooperation and reduces prejudice. The results also demonstrate that prejudice is not dependent on sophisticated human cognition and is easily manifested in simple agents with limited intelligence, having potential implications for future autonomous systems and human-machine interaction
Recommended from our members
Cost effectiveness of school-located influenza vaccination programs for elementary and secondary school children.
BackgroundStudies have noted variations in the cost-effectiveness of school-located influenza vaccination (SLIV), but little is known about how SLIV's cost-effectiveness may vary by targeted age group (e.g., elementary or secondary school students), or vaccine consent process (paper-based or web-based). Further, SLIV's cost-effectiveness may be impacted by its spillover effect on practice-based vaccination; prior studies have not addressed this issue.MethodsWe performed a cost-effectiveness analysis on two SLIV programs in upstate New York in 2015-2016: (a) elementary school SLIV using a stepped wedge design with schools as clusters (24 suburban and 18 urban schools) and (b) secondary school SLIV using a cluster randomized trial (16 suburban and 4 urban schools). The cost-per-additionally-vaccinated child (i.e., incremental cost-effectiveness ratio (ICER)) was estimated by dividing the incremental SLIV intervention cost by the incremental effectiveness (i.e., the additional number of vaccinated students in intervention schools compared to control schools). We performed deterministic analyses, one-way sensitivity analyses, and probabilistic analyses.ResultsThe overall effectiveness measure (proportion of children vaccinated) was 5.7 and 5.5 percentage points higher, respectively, in intervention elementary (52.8%) and secondary schools (48.2%) than grade-matched control schools. SLIV programs vaccinated a small proportion of children in intervention elementary (5.2%) and secondary schools (2.5%). In elementary and secondary schools, the ICER excluding vaccine purchase was 86.51 per-additionally-vaccinated-child, respectively. When additionally accounting for observed spillover impact on practice-based vaccination, the ICER decreased to 53.40). These estimates were higher than the published practice-based vaccination cost (median = 45.48). Also, these estimates were higher than our 2009-2011 urban SLIV program mean costs (12.97 per-additionally-vaccinated-child) and higher project coordination costs in 2015-2016. One-way sensitivity analyses showed that ICER estimates were most sensitive to the SLIV effectiveness.ConclusionsSLIV raises vaccination rates and may increase practice-based vaccination in primary care practices. While these SLIV programs are effective, to be as cost-effective as practice-based vaccination our SLIV programs would need to vaccinate more students and/or lower the costs for consent systems and project coordination.Trial registrationClinicalTrials.gov NCT02227186 (August 25, 2014), updated NCT03137667 (May 2, 2017)
A GBT Survey of the HALOGAS Galaxies and Their Environments I: Revealing the full extent of HI around NGC891, NGC925, NGC4414 & NGC4565
We present initial results from a deep neutral hydrogen (HI) survey of the
HALOGAS galaxy sample, which includes the spiral galaxies NGC891, NGC925,
NGC4414, and NGC4565, performed with the Robert C. Byrd Green Bank Telescope
(GBT). The resulting observations cover at least four deg around these
galaxies with an average 5 detection limit of 1.210
cm over a velocity range of 20 km s and angular scale of 9.1.
In addition to detecting the same total flux as the GBT data, the spatial
distribution of the GBT and original Westerbork Synthesis Radio Telescope
(WSRT) data match well at equal spatial resolutions. The HI mass fraction below
HI column densities of 10 cm is, on average, 2\%. We discuss the
possible origins of low column density HI of nearby spiral galaxies. The
absence of a considerable amount of newly detected HI by the GBT indicates
these galaxies do not have significant extended diffuse HI structures, and
suggests future surveys planned with the SKA and its precursors must go
\textit{at least} as deep as 10 cm in column density to
significantly increase the probability of detecting HI associated with the
cosmic web and/or cold mode accretion.Comment: Accepted for publication in The Astrophysical Journal; 28 pages, 15
figure
- …