36 research outputs found
Recommended from our members
Weapon foam accelerated aging using dynamic mechanical analysis
Rigid polyurethane foams are used for supports and as encapsulants for electronic assemblies in almost all weapon systems. Mechanical properties (storage, loss, rubbery, and glassy moduli) of three foams are being evaluated; the test scheme is illustrated. Aging tests are also being run on the long-term performance of foams being used in the Russian Fissile Material Container; there was no significant change in the glass transition temperature, glassy modulus, or rubbery modulus after one year of aging
Recommended from our members
Laboratory and field evaluation of polyurethane foam for lost circulation control
A two-part polyurethane foam has been tested in the laboratory and in the field to assess its utility in controlling lost circulation encountered when drilling geothermal wells. A field test was conducted in The Geysers in January, 1988, to evaluate the chemical formulation and downhole tool used to deploy the chemicals. Although the tool apparently functioned properly in the field test, the chemicals failed to expand sufficiently downhole, instead forming a dense polymer that may be ineffective in sealing loss zones. Subsequent laboratory tests conducted under simulated downhole conditions indicate that the foam chemical undergo sever mixing with water in the wellbore, which disturbs the kinetics of the chemical reaction more than was previously contemplated. The results indicate that without significant changes in the foam chemical formulation or delivery technique, the foam system will be ineffective in lost circulation control except under very favorable conditions. 4 refs., 6 figs., 2 tabs
The Local Bubble and Interstellar Material Near the Sun
The properties of interstellar matter (ISM) at the Sun are regulated by our
location with respect to the Local Bubble (LB) void in the ISM. The LB is
bounded by associations of massive stars and fossil supernovae that have
disrupted natal ISM and driven intermediate velocity ISM into the LB interior
void. The Sun is located in such a driven ISM parcel. The Local Fluff has a
bulk velocity of 19 km/s in the LSR, and an upwind direction towards the center
of the gas and dust ring formed by the Loop I supernova remnant interaction
with the LB. When the ram pressure of the LIC is included in the total LIC
pressure, and if magnetic thermal and cosmic ray pressures are similar, the LIC
appears to be in pressure equilibrium with the local hot bubble plasma.Comment: Proceedings of Symposium on the Composition of Matter, honoring
Johannes Geiss on the occasion of his 80th birthday. Space Science Reviews
(in press
Is the Sun Embedded in a Typical Interstellar Cloud?
The physical properties and kinematics of the partially ionized interstellar
material near the Sun are typical of warm diffuse clouds in the solar vicinity.
The interstellar magnetic field at the heliosphere and the kinematics of nearby
clouds are naturally explained in terms of the S1 superbubble shell. The
interstellar radiation field at the Sun appears to be harder than the field
ionizing ambient diffuse gas, which may be a consequence of the low opacity of
the tiny cloud surrounding the heliosphere. The spatial context of the Local
Bubble is consistent with our location in the Orion spur.Comment: "From the Outer Heliosphere to the Local Bubble", held at
International Space Sciences Institute, October 200
Recommended from our members
Aqueous foam surfactants for geothermal drilling fluids: 1. Screening
Aqueous foam is a promising drilling fluid for geothermal wells because it will minimize damage to the producing formation and would eliminate the erosion problems of air drilling. Successful use of aqueous foam will require a high foaming surfactant which will: (1) be chemically stable in the harsh thermal and chemical environment, and (2) form stable foams at high temperatures and pressures. The procedures developed to generate and test aqueous foams and the effects of a 260/sup 0/C temperature cycle on aqueous surfactant solutions are presented. More than fifty selected surfactants were evaluated with representatives from the amphoteric, anionic, cationic, and nonionic classes included. Most surfactants were severely degraded by this temperature cycle; however, some showed excellent retention of their properties. The most promising surfactant types were the alkyl and alkyl aryl sulfonates and the ethoxylated nonionics
Recommended from our members
Aqueous foams for geothermal drilling fluids. I. Surfactant screening
Aqueous foam is a promising drilling fluid for geothermal wells because it will not harm the producing formation and would eliminate the erosion problems of air drilling. Successful use of aqueous foam will require a high foaming surfactant which will: (1) be chemically stable in the harsh thermal and chemical environment, and (2) form stable foams at high temperatures and pressures. This paper presents the procedures developed to generate and test aqueous foams and the effects of a 260{sup 0}C temperature cycle on aqueous surfactant solutions. More than fifty selected surfactants were evaluated, with representatives from the amphoteric, anionic, cationic, and nonionic classes included. Most surfactants were severely degraded by this temperature cycle; however, some showed excellent retention of their properties. The most promising surfactant types were the alkyl and alkyl aryl sulfonates and the ethoxylated nonionics
Recommended from our members
Stabilized aqueous foam systems, concentrate for producing a stabilized aqueous foam and method of producing said foam
This invention comprises a combination of a water soluble polymer of the polyacrylic acid type, a foam stabilizer of dodecyl alcohol, a surfactant, a solvent and water as a concentrate for use in producing stabilized aqueous foams. In another aspect, the invention comprises a solution of the concentrate with water. In still another aspect the invention includes a method of generating stabilized aqueous foams. The stable foams have utility in security systems
Recommended from our members
Evaluation of aqueous-foam surfactants for geothermal drilling fluids
Aqueous foams are potentially useful drilling and cleanout fluids for geothermal applications. Successful use of foams requires surfactants (foaming agents) that can survive in the high-temperature geothermal environment. In this study, solutions of aqueous-foam-forming surfactants have been exposed to 260/sup 0/C (500/sup 0/F) and 310/sup 0/C (590/sup 0/F) in various chemical environments to determine if they can survive and make foams after exposure. Comparison of foams before and after exposure and the change in solution pH were used to evaluate their performance. Controlled liquid-volume-fraction foams, made in a packed-bed foam generator, were used for all tests. These tests have shown that many commercially available surfactants can survive short high-temperature cycles in mild acids, mild bases, and salt solutions as evidenced by their ability to make foams after exposure to high temperatures