10 research outputs found

    Muscle architecture, loading and joint replacement of the ankle

    Full text link
    The use of total ankle replacement (TAR) for treatment of arthritis is rapidly increasing, but survival rates are of major concern. The primary indication for TAR revision is implant loosening, which is linked with inadequate primary stability manifested in higher levels of initial implant-bone micromotion. Finite-element (FE) modelling has been utilised to assess micromotion of arthroplasty implants, but not TAR. Additionally, the biomechanical consequences of TAR malpositioning during surgery – previously linked with higher failure rates – remain unexplored. The aim of this thesis was therefore to apply FE modelling to estimate implant-bone micromotion and peri-implant bone strains of current TAR designs under optimally-positioned and malpositioned cases, and thereby identify fixation features and malpositioning scenarios that place the reconstructed ankle at risk of early loosening. Computational models simulating commonly-used TAR designs (BOX®, Mobility® and Salto®) implanted into the tibia and talus were developed; the loads applied were the contact forces acting in the ankle during gait, as calculated using a previously-validated musculoskeletal model, while implementing muscle-architecture data obtained through dissections of cadaveric legs. Micromotion and strain outcomes were larger for the tibial compared with the talar components, in agreement with previous clinical observations. The tibial Mobility® and talar Salto® components demonstrated the largest micromotion. A gap between the tibia/talus and implant component resulted in a considerable increase in implant-bone micromotion and peri-implant bone strains; the Salto® design was relatively ‘forgiving’ for such malpositioning. It was concluded that better primary stability can be achieved through fixation nearer to the joint line, while relying on more than a single fixation peg, and preserving more of the cortical sidewalls of the bone; incomplete seating of the implant on the bone increases the risk for TAR failure. The models presented in this thesis may assist implant designers and surgeons in improving TAR designs and surgical techniques.Open Acces

    Fluorescently labeled 1 nm thin nanomembranes

    Full text link
    Nottbohm CT, Sopher R, Heilemann M, Sauer M, Gölzhäuser A. Fluorescently labeled 1 nm thin nanomembranes. Journal of Biotechnology. 2010;149(4):267-271

    Upper Limb Kinematics of Handwriting among Children with and without Developmental Coordination Disorder

    Full text link
    Background: Children with developmental coordination disorder (DCD) often experience difficulties with handwriting legibility and speed. This study investigates the relationship between handwriting and upper limb kinematics to characterize movement patterns of children with DCD and typically developing (TD) children. Methods: 30 children with and without DCD matched for age, gender, and parent education were compared across handwriting abilities using a standardized handwriting assessment of both copied and dictated tasks (A-A Handwriting). The 3D motion capture system (Qualysis) was used to analyze upper limb kinematics and characterize movement patterns during handwriting and contrasted with written output. Results: Children with DCD wrote fewer legible letters in both copying and dictation. Children with DCD also showed poor automatization of key writing concepts. Atypical wrist postures were associated with reduced legibility for children with DCD (F (1,27) 4.71, p = 0.04, p-η2 = 0.15); whereas for TD children, better legibility was associated with greater variations in movement speed, particularly of the wrist (rho = −0.578, p < 0.05). Conclusion: Results reflect different movement parameters influencing handwriting in children with DCD. An improved understanding of the movement characteristics during handwriting of these children may assist intervention design

    The correlation between upper extremity musculoskeletal symptoms and joint kinematics, playing habits and hand span during playing among piano students.

    Full text link
    OBJECTIVE:We aimed to investigate the correlations between Upper Extremity Musculoskeletal Symptoms (MSD) and joint kinematics while playing the piano, as well as correlations between MSD and psychosocial, professional and personal habits, and bio-demographic risk factors of piano students. METHOD:This cross-sectional study included 15 piano students. The research tools included 3D motion capture, anthropometric measurements, and questionnaires for obtaining data about MSD, psychological, and personal factors. RESULTS:The piano students recruited for this study experienced a variety of MSD during the past 12 months, with a particularly high prevalence of neck pain (80%). Extreme wrist extension and/or elbow flexion while playing the piano also correlated with MSD. Additionally, this study identified correlations between MSD and hand span (r = -.69, p≤.004) and number of playing hours per week (r = .58, p≤.024). CONCLUSIONS:Anthropometric factors and playing patterns should be considered together with well-known MSD risk factors, like extreme and repetitive movements. However, considering each joint singularly might not be sufficient to prevent the development of MSD when instructing the piano player; accordingly, joint synchronization should also be considered
    corecore