14,399 research outputs found

    The power of the few

    Get PDF

    Assessing the effect of lens mass model in cosmological application with updated galaxy-scale strong gravitational lensing sample

    Full text link
    By comparing the dynamical and lensing masses of early-type lens galaxies, one can constrain both the cosmological parameters and the density profiles of galaxies. We explore the constraining power on cosmological parameters and the effect of the lens mass model in this method with 161 galaxy-scale strong lensing systems, which is currently the largest sample with both high resolution imaging and stellar dynamical data. We assume a power-law mass model for the lenses, and consider three different parameterizations for γ\gamma (i.e., the slope of the total mass density profile) to include the effect of the dependence of γ\gamma on redshift and surface mass density. When treating δ\delta (i.e., the slope of the luminosity density profile) as a universal parameter for all lens galaxies, we find the limits on the cosmological parameter Ωm\Omega_m are quite weak and biased, and also heavily dependent on the lens mass model in the scenarios of parameterizing γ\gamma with three different forms. When treating δ\delta as an observable for each lens, the unbiased estimate of Ωm\Omega_m can be obtained only in the scenario of including the dependence of γ\gamma on both the redshift and the surface mass density, that is Ωm=0.381−0.154+0.185\Omega_m = 0.381^{+0.185}_{-0.154} at 68\% confidence level in the framework of a flat Λ\LambdaCDM model. We conclude that the significant dependencies of γ\gamma on both the redshift and the surface mass density, as well as the intrinsic scatter of δ\delta among the lenses, need to be properly taken into account in this method.Comment: Accepted for publication in MNRAS; 17 pages, 5 figures, 2 table
    • …
    corecore