13 research outputs found

    Preventive Strategies against Human Papillomaviruses

    Get PDF
    Human papillomavirus (HPV) infection is among the most common viral infections of the reproductive tract. Out of more than 100 different types of HPV identified so far, only a few (termed as “high-risk” subtypes) are associated with cervical cancer. On the other hand, “low-risk” subtypes are associated with genital warts and other benign changes in cervical and oral mucosa. Majority of the HPV infections usually clear up without any intervention within a few months. However, a fraction of HPV infections, such as those with types 16 and 18, can become persistent which may lead to the development of anogenital or cervical cancers. HPV subtypes 16 and 18 together are responsible for approximately 70% of all cervical cancer cases, the fourth major cause of cancer-related deaths in women. In the absence of any specific treatment options, preventive measures are considered as cornerstone of strategies aimed at curbing the burden of this disease. This chapter presents a comprehensive review of strategies that can be employed to prevent and eradicate HPV infection. Minimizing the exposure to HPV risk factors such as unprotected sex, multiple sex partners, early age sex, and not being circumcised, can reduce the chances of getting HPV infection to a significant level. Mass screening programs have also been effective in HPV eradication. Nevertheless, immunization against HPV has proven to be the most promising strategy in fight against HPV. Virus-like particles based on bivalent, quadrivalent, and nonavalent anti-HPV vaccines have been licensed and are available in market under the trade names of Cervarix®, Gardasil®, and Gardasil9®, respectively. Various clinical trials and population-based studies have demonstrated high levels of efficacy for all the three vaccines in preventing type-specific malignancies

    A Short Overview on Hearing Loss and Related Auditory Defects

    No full text
    Hearing is the ability of a person to recognize sound in the surroundings and it makes communication possible. Ear is the human organ serving as a transducer that perceives signals from the environment and converts it into detectable forms for interpretation by the brain. The auditory system is among one of the most highly studied systems. Researchers have described the physiological function of the system in detail but due to its complexity, the genetic mechanisms and genes implicated in auditory function are still being revealed. Numerous studies on the genetics of hearing indicate hearing loss as one of the most common and prevalent disorders as it affects approximately five million people worldwide. Besides hearing loss, there are several other pathologies of auditory system which are common and have an established genetic basis. In this chapter, we will introduce the genetics of some common auditory pathologies including syndromic and non-syndromic hearing loss, auditory neuropathy, age-related hearing loss, and tinnitus. These understandings will 1 day lead to better diagnosis, management, and cures

    Identification and application of biocontrol agents against Cotton leaf curl virus disease in Gossypium hirsutum under greenhouse conditions

    No full text
    Biological control is a novel approach in crop protection. Bacteria, such as Bacillus spp. and Pseudomonas spp., are reported for this purpose and some of their products are already commercially available. In this study, the rhizosphere and phyllosphere of healthy cotton plants were used as a source of bacterial isolates with properties of potential biocontrol agents. The isolates were screened for phosphate solubilization activity, indole acetic acid (IAA) production and antifungal activity. Two isolates, S1HL3 and S1HL4, showed phosphate solubilization and IAA production simultaneously, while another two, JS2HR4 and JS3HR2, demonstrated potential to inhibit fungal pathogens. These bacteria were identified as Pseudomonas aeruginosa (S1HL3), Burkholderia sp. (S1HL4) and Bacillus sp. (JS2HR4 and JS3HR2) based on biochemical and molecular characteristics. The isolates were tested against Cotton leaf curl virus (CLCuV) in greenhouse conditions, both as individual bacterial isolates and consortia. Treated plants were healthy as compared to control plants, where up to 74% of the plants were symptomatic for CLCuV infection. Maximum inhibition of CLCuV was observed in the plants treated with a mixture of bacterial isolates: the viral load in the treated plants was only 0.4% vs. up to 74% in controls. This treatment consortium included P. aeruginosa S1HL3, Burkholderia sp. S1HL4 and Bacillus spp. isolates, JS2HR4 and JS3HR2. The principal-component biplot showed a highly significant correlation between the viral load percentage and the disease incidence

    Dispersed DNA variants underlie hearing loss in South Florida’s minority population

    No full text
    Abstract Background We analyzed the genetic causes of sensorineural hearing loss in racial and ethnic minorities of South Florida by reviewing demographic, phenotypic, and genetic data on 136 patients presenting to the Hereditary Hearing Loss Clinic at the University of Miami. In our retrospective chart review, of these patients, half self-identified as Hispanic, and the self-identified racial distribution was 115 (86%) White, 15 (11%) Black, and 6 (4%) Asian. Our analysis helps to reduce the gap in understanding the prevalence, impact, and genetic factors related to hearing loss among diverse populations. Results The causative gene variant or variants were identified in 54 (40%) patients, with no significant difference in the molecular diagnostic rate between Hispanics and Non-Hispanics. However, the total solve rate based on race was 40%, 47%, and 17% in Whites, Blacks, and Asians, respectively. In Non-Hispanic Whites, 16 different variants were identified in 13 genes, with GJB2 (32%), MYO7A (11%), and SLC26A4 (11%) being the most frequently implicated genes. In White Hispanics, 34 variants were identified in 20 genes, with GJB2 (22%), MYO7A (7%), and STRC-CATSPER2 (7%) being the most common. In the Non-Hispanic Black cohort, the gene distribution was evenly dispersed, with 11 variants occurring in 7 genes, and no variant was identified in 3 Hispanic Black probands. For the Asian cohort, only one gene variant was found out of 6 patients. Conclusion This study demonstrates that the diagnostic rate of genetic studies in hearing loss varies according to race in South Florida, with more heterogeneity in racial and ethnic minorities. Further studies to delineate deafness gene variants in underrepresented populations, such as African Americans/Blacks from Hispanic groups, are much needed to reduce racial and ethnic disparities in genetic diagnoses
    corecore