8,384 research outputs found
Parity-Violating Electron Scattering as a Probe of Supersymmetry
We compute the one-loop supersymmetric (SUSY) contributions to the weak
charges of the electron () and proton () using the Minimal
Supersymmetric Standard Model (MSSM). These vector couplings of the
-boson to fermions will be determined in two fixed-target,
parity-violating electron scattering experiments. The SUSY loop contributions
to and can be substantial, leading to several percent
corrections to the Standard Model values for these quantities. We show that the
relative signs of the SUSY loop effects on and are correlated
and positive over nearly all of the MSSM parameter space, whereas inclusion of
R-parity nonconserving interactions can lead to opposite sign relative shifts
in the weak charges. Thus, a comparison of and measurements
could help distinguish between different SUSY scenarios.Comment: 4 pages, 2 figure
Probing Supersymmetry with Neutral Current Scattering Experiments
We compute the supersymmetric contributions to the weak charges of the
electron and proton in the framework of Minimal Supersymmetric Standard Model.
We also consider the ratio of neutral current to charged current cross
sections, R_nu and R_nubar at nu (nubar)-nucleus deep inelastic scattering, and
compare the supersymmetric corrections with the deviations of these quantities
from the Standard Model predictions implied by the recent NuTeV measurement.Comment: 4 pages, contribution to the proceedings of CIPANP 2003 (May, 2003),
New York Cit
Supersymmetric Effects in Parity-Violating Deep Inelastic Electron-Nucleus Scattering
We compute the supersymmetric (SUSY) corrections to the parity-violating,
deep inelastic electron-deuteron asymmetry. Working with the Minimal
Supersymmetric Standard Model (MSSM) we consider two cases: R parity conserving
and R parity-violating. Under these scenarios, we compare the SUSY effects with
those entering other parity-violating observables. For both cases of the MSSM,
we find that the magnitude of the SUSY corrections can be as large as about 1%
and that they are strongly correlated with the effects on other
parity-violating observables. A comparison of various low-energy
parity-violating observables thus provides a potentially interesting probe of
SUSY.Comment: 12 pages, 5 figure
Electrically charged fluids with pressure in Newtonian gravitation and general relativity in d spacetime dimensions: theorems and results for Weyl type systems
Previous theorems concerning Weyl type systems, including Majumdar-Papapetrou
systems, are generalized in two ways, namely, we take these theorems into d
spacetime dimensions (), and we also consider the very
interesting Weyl-Guilfoyle systems, i.e., general relativistic charged fluids
with nonzero pressure. In particular within Newton-Coulomb theory of charged
gravitating fluids, a theorem by Bonnor (1980) in three-dimensional space is
generalized to arbitrary space dimensions. Then, we prove a new
theorem for charged gravitating fluid systems in which we find the condition
that the charge density and the matter density should obey. Within general
relativity coupled to charged dust fluids, a theorem by De and Raychaudhuri
(1968) in four-dimensional spacetimes in rendered into arbitrary
dimensions. Then a theorem, new in and dimensions, for
Weyl-Guilfoyle systems, is stated and proved, in which we find the condition
that the charge density, the matter density, the pressure, and the
electromagnetic energy density should obey. This theorem comprises, as
particular cases, a theorem by Gautreau and Hoffman (1973) and results in four
dimensions by Guilfoyle (1999). Upon connection of an interior charged solution
to an exterior Tangherlini solution (i.e., a Reissner-Nordstr\"om solution in
d-dimensions), one is able to give a general definition for gravitational mass
for this kind of relativistic systems and find a mass relation with the several
quantities of the interior solution. It is also shown that for sources of
finite extent the mass is identical to the Tolman mass.Comment: 27 page
Measurement of the Hyperfine Structure and Isotope Shifts of the 3s23p2 3P2 to 3s3p3 3Do3 Transition in Silicon
The hyperfine structure and isotope shifts of the 3s23p2 3P2 to 3s3p3 3Do3
transition in silicon have been measured. The transition at 221.7 nm was
studied by laser induced fluorescence in an atomic Si beam. For 29Si, the
hyperfine A constant for the 3s23p2 3P2 level was determined to be -160.1+-1.3
MHz (1 sigma error), and the A constant for the 3s3p3 3Do3 level is -532.9+-0.6
MHz. This is the first time that these constants were measured. The isotope
shifts (relative to the abundant isotope 28Si) of the transition were
determined to be 1753.3+-1.1 MHz for 29Si and 3359.9+-0.6 MHz for 30Si. This is
an improvement by about two orders of magnitude over a previous measurement.
From these results we are able to predict the hyperfine structure and isotope
shift of the radioactive 31Si atom, which is of interest in building a scalable
quantum computer
Hadron Spin Dynamics
Spin effects in exclusive and inclusive reactions provide an essential new
dimension for testing QCD and unraveling hadron structure. Remarkable new
experiments from SLAC, HERMES (DESY), and the Jefferson Laboratory present many
challenges to theory, including measurements at HERMES and SMC of the single
spin asymmetries in pion electroproduction, where the proton is polarized
normal to the scattering plane. This type of single spin asymmetry may be due
to the effects of rescattering of the outgoing quark on the spectators of the
target proton, an effect usually neglected in conventional QCD analyses. Many
aspects of spin, such as single-spin asymmetries and baryon magnetic moments
are sensitive to the dynamics of hadrons at the amplitude level, rather than
probability distributions. I illustrate the novel features of spin dynamics for
relativistic systems by examining the explicit form of the light-front
wavefunctions for the two-particle Fock state of the electron in QED, thus
connecting the Schwinger anomalous magnetic moment to the spin and orbital
momentum carried by its Fock state constituents and providing a transparent
basis for understanding the structure of relativistic composite systems and
their matrix elements in hadronic physics. I also present a survey of
outstanding spin puzzles in QCD, particularly the double transverse spin
asymmetry A_{NN} in elastic proton-proton scattering, the J/psi to rho-pi
puzzle, and J/psi polarization at the Tevatron.Comment: Concluding theory talk presented at SPIN2001, the Third
Circum-Pan-Pacific Symposium on High Energy Physics, October, 2001, Beijin
Electroweak Beautygenesis: From b {\to} s CP-violation to the Cosmic Baryon Asymmetry
We address the possibility that CP-violation in mixing may
help explain the origin of the cosmic baryon asymmetry. We propose a new
baryogenesis mechanism - "Electroweak Beautygenesis" - explicitly showing that
these two CP-violating phenomena can be sourced by a common CP-phase. As an
illustration, we work in the Two-Higgs-Doublet model. Because the relevant
CP-phase is flavor off-diagonal, this mechanism is less severely constrained by
null results of electric dipole moment searches than other scenarios. We show
how measurements of flavor observables by the D0, CDF, and LHCb collaborations
test this scenario.Comment: 4 pages, 1 figure, 1 tabl
Stability of atomic clocks based on entangled atoms
We analyze the effect of realistic noise sources for an atomic clock
consisting of a local oscillator that is actively locked to a spin-squeezed
(entangled) ensemble of atoms. We show that the use of entangled states can
lead to an improvement of the long-term stability of the clock when the
measurement is limited by decoherence associated with instability of the local
oscillator combined with fluctuations in the atomic ensemble's Bloch vector.
Atomic states with a moderate degree of entanglement yield the maximal clock
stability, resulting in an improvement that scales as compared to the
atomic shot noise level.Comment: 4 pages, 2 figures, revtex
- …