3,932 research outputs found

    Electric Deflection of Rotating Molecules

    Full text link
    We provide a theory of the deflection of polar and non-polar rotating molecules by inhomogeneous static electric field. Rainbow-like features in the angular distribution of the scattered molecules are analyzed in detail. Furthermore, we demonstrate that one may efficiently control the deflection process with the help of short and strong femtosecond laser pulses. In particular the deflection process may by turned-off by a proper excitation, and the angular dispersion of the deflected molecules can be substantially reduced. We study the problem both classically and quantum mechanically, taking into account the effects of strong deflecting field on the molecular rotations. In both treatments we arrive at the same conclusions. The suggested control scheme paves the way for many applications involving molecular focusing, guiding, and trapping by inhomogeneous fields

    Phonon-bottleneck enhanced magnetic hysteresis in a molecular paddle wheel complex of Ru25+_2^{5+}

    Full text link
    The ruthenium based molecular magnet [Ru2_2(D(3,5-Cl2_2Ph)F)4_4Cl(0.5H2_2O)\cdotpC6_6H14_{14}] (hereafter Ru2_2) behaves as a two-level system at sufficiently low temperatures. The authors performed spin detection by means of single-crystal measurements and obtained magnetic hysteresis loops around zero bias as a function of field sweeping rate. Compared to other molecular systems, Ru2_2 presents an enhanced irreversibility as shown by ``valleys'' of negative differential susceptibility in the hysteresis curves. Simulations based on phonon bottleneck model are in good qualitative agreement and suggest an abrupt spin reversal combined with insufficient thermal coupling between sample and cryostat phonon bath.Comment: 4 pages, 3 figure

    Hadronic effects in leptonic systems: muonium hyperfine structure and anomalous magnetic moment of muon

    Full text link
    Contributions of hadronic effects to the muonium physics and anomalous magnetic moment of muon are considered. Special attention is paid to higher-order effects and the uncertainty related to the hadronic contribution to the hyperfine structure interval in the ground state of muonium.Comment: Presented at PSAS 2002 (St. Petersburg

    Testing Bell's inequality with two-level atoms via population spectroscopy

    Full text link
    We propose a feasible experimental scheme, employing methods of population spectroscopy with two-level atoms, for a test of Bell's inequality for massive particles. The correlation function measured in this scheme is the joint atomic QQ function. An inequality imposed by local realism is violated by any entangled state of a pair of atoms.Comment: 4 pages, REVTeX, no figures. More info on http://www.ligo.caltech.edu/~cbrif/science.htm

    Collisional perturbation of radio-frequency E1 transitions in an atomic beam of dysprosium

    Full text link
    We have studied collisional perturbations of radio-frequency (rf) electric-dipole (E1) transitions between the nearly degenerate opposite-parity levels in atomic dysprosium (Dy) in the presence of 10 to 80 μ\muTorr of H2_\text{2}, N2_\text{2}, He, Ar, Ne, Kr, and Xe. Collisional broadening and shift of the resonance, as well as the attenuation of the signal amplitude are observed to be proportional to the foreign-gas density with the exception of H2_2 and Ne, for which no shifts were observed. Corresponding rates and cross sections are presented. In addition, rates and cross sections for O2_2 are extracted from measurements using air as foreign gas. The primary motivation for this study is the need for accurate determination of the shift rates, which are needed in a laboratory search for the temporal variation of the fine-structure constant [A. T. Nguyen, D. Budker, S. K. Lamoreaux, and J. R. Torgerson, Phys. Rev. A \textbf{69}, 22105 (2004)].Comment: 11 pages, 8 figure

    Quantum Clock Synchronization Based on Shared Prior Entanglement

    Get PDF
    We demonstrate that two spatially separated parties (Alice and Bob) can utilize shared prior quantum entanglement, and classical communications, to establish a synchronized pair of atomic clocks. In contrast to classical synchronization schemes, the accuracy of our protocol is independent of Alice or Bob's knowledge of their relative locations or of the properties of the intervening medium.Comment: 4 page

    Constraints on T-Odd, P-Even Interactions from Electric Dipole Moments

    Get PDF
    We construct the relationship between nonrenormalizable,effective, time-reversal violating (TV) parity-conserving (PC) interactions of quarks and gauge bosons and various low-energy TVPC and TV parity-violating (PV) observables. Using effective field theory methods, we delineate the scenarious under which experimental limits on permanent electric dipole moments (EDM's) of the electron, neutron, and neutral atoms as well as limits on TVPC observables provide the most stringent bounds on new TVPC interactions. Under scenarios in which parity invariance is restored at short distances, the one-loop EDM of elementary fermions generate the most severe constraints. The limits derived from the atomic EDM of 199^{199}Hg are considerably weaker. When parity symmetry remains broken at short distances, direct TVPC search limits provide the least ambiguous bounds. The direct limits follow from TVPC interactions between two quarks.Comment: 43 pages, 9 figure

    P and T Violation From Certain Dimension Eight Weinberg Operators

    Full text link
    Dimension eight operators of the Weinberg type have been shown to give important contributions to CP violating phenomena, such as the electric dipole moment of the neutron. In this note we show how operators related to these (and expected to occur on equal footing) can give rise to time-reversal violating phenomena such as atomic electric dipole moments. We also estimate the induced parity violating phenomena such as small ``wrong'' parity admixtures in atomic states and find that they are negligible. Uses harvmac.tex and epsf.tex; one figure submitted as a uuencoded, compressed EPS file.Comment: 6 pages, EFI-92-5

    Wide-angle elastic scattering and color randomization

    Get PDF
    Baryon-baryon elastic scattering is considered in the independent scattering (Landshoff) mechanism. It is suggested that for scattering at moderate energies, direct and interchange quark channels contribute with equal color coefficients because the quark color is randomized by soft gluon exchange during the hadronization stage. With this assumption, it is shown that the ratio of cross sections Rpp/ppR_{\overline{p} p/ p p} at CM angle θ=900\theta = 90^0 decreases from a high energy value of R_{\pbar p / pp} \approx 1/2.7, down to R_{\pbar p / pp} \approx 1/28, compatible with experimental data at moderate energies. This sizable fall in the ratio seems to be characteristic of the Landshoff mechanism, in which changes at the quark level have a strong effect precisely because the hadronic process occurs via multiple quark scatterings. The effect of color randomization on the angular distribution of proton-proton elastic scattering and the cross section ratio Rnp/ppR_{np/pp} is also discussed.Comment: 18 pages, latex2e, 4 uuencoded figures, include
    corecore