201 research outputs found

    Constraints on T-Odd, P-Even Interactions from Electric Dipole Moments

    Get PDF
    We construct the relationship between nonrenormalizable,effective, time-reversal violating (TV) parity-conserving (PC) interactions of quarks and gauge bosons and various low-energy TVPC and TV parity-violating (PV) observables. Using effective field theory methods, we delineate the scenarious under which experimental limits on permanent electric dipole moments (EDM's) of the electron, neutron, and neutral atoms as well as limits on TVPC observables provide the most stringent bounds on new TVPC interactions. Under scenarios in which parity invariance is restored at short distances, the one-loop EDM of elementary fermions generate the most severe constraints. The limits derived from the atomic EDM of 199^{199}Hg are considerably weaker. When parity symmetry remains broken at short distances, direct TVPC search limits provide the least ambiguous bounds. The direct limits follow from TVPC interactions between two quarks.Comment: 43 pages, 9 figure

    Quantum Clock Synchronization Based on Shared Prior Entanglement

    Get PDF
    We demonstrate that two spatially separated parties (Alice and Bob) can utilize shared prior quantum entanglement, and classical communications, to establish a synchronized pair of atomic clocks. In contrast to classical synchronization schemes, the accuracy of our protocol is independent of Alice or Bob's knowledge of their relative locations or of the properties of the intervening medium.Comment: 4 page

    Super-conservative interpretation of muon g-2 results applied to supersymmetry

    Get PDF
    The recent developments in theory and experiment related to the anomalous magnetic moment of the muon are applied to supersymmetry. We follow a very cautious course, demanding that the supersymmetric contributions fit within five standard deviations of the difference between experiment and the standard model prediction. Arbitrarily small supersymmetric contributions are then allowed, so no upper bounds on superpartner masses result. Nevertheless, non-trivial exclusions are found. We characterize the substantial region of parameter space ruled out by this analysis that has not been probed by any previous experiment. We also discuss some implications of the results for forthcoming collider experiments.Comment: 10 pages, latex, 3 fig

    Implications of the Muon Anomalous Magnetic Moment for Supersymmetry

    Get PDF
    We re-examine the bounds on supersymmetric particle masses in light of the E821 data on the muon anomalous magnetic moment. We confirm, extend and supersede previous bounds. In particular we find (at one sigma) no lower limit on tan(beta) or upper limit on the chargino mass implied by the data at present, but at least 4 sparticles must be lighter than 700 to 820 GeV and at least one sparticle must be lighter than 345 to 440 GeV. However, the E821 central value bounds tan(beta) > 4.7 and the lighter chargino mass by 690 GeV. For tan(beta) < 10, the data indicates a high probability for direct discovery of SUSY at Run II or III of the Tevatron.Comment: 20 pages LaTeX, 14 figures; references adde

    The Weak Charge of the Proton and New Physics

    Get PDF
    We address the physics implications of a precision determination of the weak charge of the proton, QWP, from a parity violating elastic electron proton scattering experiment to be performed at the Jefferson Laboratory. We present the Standard Model (SM) expression for QWP including one-loop radiative corrections, and discuss in detail the theoretical uncertainties and missing higher order QCD corrections. Owing to a fortuitous cancellation, the value of QWP is suppressed in the SM, making it a unique place to look for physics beyond the SM. Examples include extra neutral gauge bosons, supersymmetry, and leptoquarks. We argue that a QWP measurement will provide an important complement to both high energy collider experiments and other low energy electroweak measurements. The anticipated experimental precision requires the knowledge of the order alpha_s corrections to the pure electroweak box contributions. We compute these contributions for QWP, as well as for the weak charges of heavy elements as determined from atomic parity violation.Comment: 22 pages of LaTeX, 5 figure

    Reevaluation of the role of nuclear uncertainties in experiments on atomic parity violation with isotopic chains

    Get PDF
    In light of new data on neutron distributions from experiments with antiprotonic atoms [ Trzcinska {\it et al.}, Phys. Rev. Lett. 87, 082501 (2001)], we reexamine the role of nuclear-structure uncertainties in the interpretation of measurements of parity violation in atoms using chains of isotopes of the same element. With these new nuclear data, we find an improvement in the sensitivity of isotopic chain measurements to ``new physics'' beyond the standard model. We compare possible constraints on ``new physics'' with the most accurate to date single-isotope probe of parity violation in the Cs atom. We conclude that presently isotopic chain experiments employing atoms with nuclear charges Z < 50 may result in more accurate tests of the weak interaction.Comment: 6 pages, 1 fig., submitted to Phys. Rev.

    The Nucleon Anapole Moment and Parity-Violating ep Scattering

    Get PDF
    Parity-violating (PV) interactions among quarks in the nucleon induce a PV γNN\gamma NN coupling, or anapole moment (AM). We compute electroweak gauge-independent contributions to the AM through {\cal O}(1/\lamchis) in chiral perturbation theory. We estimate short-distance PV effects using resonance saturation. The AM contributions to PV electron-proton scattering slightly enhance the axial vector radiative corrections, R_A^p, over the scale implied by the Standard Model when weak quark-quark interactions are neglected. We estimate the theoretical uncertainty associated with the AM contributions to R_A^p to be large, and discuss the implications for the interpretation PV of ep scattering.Comment: RevTex 29 pages + 8 PS figures, references and discussions added, to appear in Phys. Rev.

    Lepton Dipole Moments and Rare Decays in the CP-violating MSSM with Nonuniversal Soft-Supersymmetry Breaking

    Full text link
    We investigate the muon anomalous magnetic dipole moment (MDM), the muon electric dipole moment (EDM) and the lepton-flavour-violating decays of the τ\tau-lepton, τμγ\tau \to \mu \gamma and τ3μ\tau\to 3\mu, in the CP-violating Minimal Supersymmetric Standard Model (MSSM) with nonuniversal soft-supersymmetry breaking. We evaluate numerically the muon EDM and the branching ratios B(τμγ)B(\tau \to \mu\gamma) and B(τ3μ)B(\tau \to 3\mu), after taking into account the experimental constraints from the electron EDM and muon MDM. Upon imposition of the experimental limits on our theoretical predictions for the aforementioned branching ratios and the muon MDM, we obtain an upper bound of about 1023ecm10^{-23} e\cdot cm on the muon EDM which lies well within the explorable reach of the proposed experiment at BNL.Comment: Latex, 26 pages, 8 figures, accepted for publication in Phys. Rev.

    Neutron density distributions for atomic parity nonconservation experiments

    Get PDF
    The neutron distributions of Cs, Ba, Yb and Pb isotopes are described in the framework of relativistic mean-field theory. The self-consistent ground state proton and neutron density distributions are calculated with the relativistic Hartree-Bogoliubov model. The binding energies, the proton and neutron radii, and the quadrupole deformations are compared with available experimental data, as well as with recent theoretical studies of the nuclear structure corrections to the weak charge in atomic parity nonconservation experiments.Comment: 16 pages, RevTex, 11 eps figs, submitted to Phys. Rev.

    Muon Physics: A Pillar of the Standard Model

    Full text link
    Since its discovery in the 1930s, the muon has played an important role in our quest to understand the sub-atomic theory of matter. The muon was the first second-generation standard-model particle to be discovered, and its decay has provided information on the (Vector -Axial Vector) structure of the weak interaction, the strength of the weak interaction, G_F, and the conservation of lepton number (flavor) in muon decay. The muon's anomalous magnetic moment has played an important role in restricting theories of physics beyond the standard standard model, where at present there is a 3.4 standard-deviation difference between the experiment and standard-model theory. Its capture on the atomic nucleus has provided valuable information on the modification of the weak current by the strong interaction which is complementary to that obtained from nuclear beta decay.Comment: 8 pages, 9 figures. Invited paper for the Journal of Physical Society in Japan (JPSJ), Special Topics Issue "Frontiers of Elementary Particle Physics, The Standard Model and beyond
    corecore