5,985 research outputs found
Man-machine interface analysis of the flight design system
The objective of the current effort was to perform a broad analysis of the human factors issues involved in the design of the Flight Design System (FDS). The analysis was intended to include characteristics of the system itself, such as: (1) basic structure and functional capabilities of FDS; (2) user backgrounds, capabilities, and possible modes of use; (3) FDS interactive dialogue, problem solving aids; (4) system data management capabilities; and to include, as well, such system related matters as: (1) flight design team structure; (2) roles of technicians; (3) user training; and (4) methods of evaluating system performance. Wherever possible, specific recommendations are made. In other cases, the issues which seem most important are identified. In some cases, additional analyses or experiments which might provide resolution are suggested
Scheduling language and algorithm development study. Volume 2, phase 2: Introduction to plans programming
A user guide for the Programming Language for Allocation and Network Scheduling (PLANS) is presented. Information is included for the construction of PLANS programs. The basic philosophy of PLANS is discussed, and access and update reference techniques are described along with the use of tree structures
Combined uncertainty factor for sampling and analysis
Measurement uncertainty that arises from primary sampling can be expressed as an uncertainty factor, which recognises its sometimes approximately log-normal probability distribution. By contrast, uncertainty arising from chemical analysis is usually expressed as relative uncertainty, based upon the assumptions of its approximately normal distribution. A new method is proposed that enables uncertainty from these two sources, expressed in these different ways, to be combined to produce an estimate of the total combined uncertainty of the measurement values that result when the measurement process is considered as a whole
Environmental, developmental, and genetic factors controlling root system architecture
A better understanding of the development and architecture of roots is essential to develop strategies to increase crop yield and optimize agricultural land use. Roots control nutrient and water uptake, provide anchoring and mechanical support and can serve as important storage organs. Root growth and development is under tight genetic control and modulated by developmental cues including plant hormones and the environment. This review focuses on root architecture and its diversity and the role of environment, nutrient, and water as well as plant hormones and their interactions in shaping root architecture
Nucleon Structure and Parity-Violating Electron Scattering
We review the area of strange quark contributions to nucleon structure. In
particular, we focus on current models of strange quark vector currents in the
nucleon and the associated parity-violating elastic electron scattering
experiments from which vector- and axial-vector currents are extractedComment: 40 pages including 7 figures; review article to be published in Int.
J. Mod. Phys.
Constraints on T-Odd, P-Even Interactions from Electric Dipole Moments
We construct the relationship between nonrenormalizable,effective,
time-reversal violating (TV) parity-conserving (PC) interactions of quarks and
gauge bosons and various low-energy TVPC and TV parity-violating (PV)
observables. Using effective field theory methods, we delineate the scenarious
under which experimental limits on permanent electric dipole moments (EDM's) of
the electron, neutron, and neutral atoms as well as limits on TVPC observables
provide the most stringent bounds on new TVPC interactions. Under scenarios in
which parity invariance is restored at short distances, the one-loop EDM of
elementary fermions generate the most severe constraints. The limits derived
from the atomic EDM of Hg are considerably weaker. When parity symmetry
remains broken at short distances, direct TVPC search limits provide the least
ambiguous bounds. The direct limits follow from TVPC interactions between two
quarks.Comment: 43 pages, 9 figure
Scheduling language and algorithm development study. Volume 3, phase 2: As-built specifications for the prototype language and module library
Detailed specifications of the prototype language and module library are presented. The user guide to the translator writing system is included
Adiabatic orientation of rotating dipole molecules in an external field
The induced polarization of a beam of polar clusters or molecules passing
through an electric or magnetic field region differs from the textbook
Langevin-Debye susceptibility. This distinction, which is important for the
interpretation of deflection and focusing experiments, arises because instead
of acquiring thermal equilibrium in the field region, the beam ensemble
typically enters the field adiabatically, i.e., with a previously fixed
distribution of rotational states. We discuss the orientation of rigid
symmetric-top systems with a body-fixed electric or magnetic dipole moment. The
analytical expression for their "adiabatic-entry" orientation is elucidated and
compared with exact numerical results for a range of parameters. The
differences between the polarization of thermodynamic and "adiabatic-entry"
ensembles, of prolate and oblate tops, and of symmetric-top and linear rotators
are illustrated and identified.Comment: 18 pages, 4 figure
Beam lead technology
Beam lead technology for microcircuit interconnections with applications to metallization, passivation, and bondin
- …