298 research outputs found

    Ultraviolet emission lines of Si II in quasars --- investigating the "Si II disaster"

    Get PDF
    The observed line intensity ratios of the Si II 1263 and 1307 \AA\ multiplets to that of Si II 1814\,\AA\ in the broad line region of quasars are both an order of magnitude larger than the theoretical values. This was first pointed out by Baldwin et al. (1996), who termed it the "Si II disaster", and it has remained unresolved. We investigate the problem in the light of newly-published atomic data for Si II. Specifically, we perform broad line region calculations using several different atomic datasets within the CLOUDY modeling code under optically thick quasar cloud conditions. In addition, we test for selective pumping by the source photons or intrinsic galactic reddening as possible causes for the discrepancy, and also consider blending with other species. However, we find that none of the options investigated resolves the Si II disaster, with the potential exception of microturbulent velocity broadening and line blending. We find that a larger microturbulent velocity (∌500 kms−1\sim 500 \rm \, kms^{-1}) may solve the Si II disaster through continuum pumping and other effects. The CLOUDY models indicate strong blending of the Si II 1307 \AA\ multiplet with emission lines of O I, although the predicted degree of blending is incompatible with the observed 1263/1307 intensity ratios. Clearly, more work is required on the quasar modelling of not just the Si II lines but also nearby transitions (in particular those of O I) to fully investigate if blending may be responsible for the Si II disaster.Comment: Accepted for publication in Ap

    A Quantitative Comparison of Opacities Calculated Using the Distorted- Wave and R\boldsymbol{R}-Matrix Methods

    Get PDF
    The present debate on the reliability of astrophysical opacities has reached a new climax with the recent measurements of Fe opacities on the Z-machine at the Sandia National Laboratory \citep{Bailey2015}. To understand the differences between theoretical results, on the one hand, and experiments on the other, as well as the differences among the various theoretical results, detailed comparisons are needed. Many ingredients are involved in the calculation of opacities; deconstructing the whole process and comparing the differences at each step are necessary to quantify their importance and impact on the final results. We present here such a comparison using the two main approaches to calculate the required atomic data, the RR-Matrix and distorted-wave methods, as well as sets of configurations and coupling schemes to quantify the effects on the opacities for the Fe XVIIFe\ XVII and Ni XIVNi\ XIV ions.Comment: 10 pages, 2 figure

    Quantum-mechanical calculation of Stark widths of Ne VII n=3, Δn=0\Delta n=0 transitions

    Full text link
    The Stark widths of the Ne VII 2s3s-2s3p singlet and triplet lines are calculated in the impact approximation using quantum-mechanical Convergent Close-Coupling and Coulomb-Born-Exchange approximations. It is shown that the contribution from inelastic collisions to the line widths exceeds the elastic width contribution by about an order of magnitude. Comparison with the line widths measured in a hot dense plasma of a gas-liner pinch indicates a significant difference which may be naturally explained by non-thermal Doppler effects from persistent implosion velocities or turbulence developed during the pinch implosion. Contributions to the line width from different partial waves and types of interactions are discussed as well.Comment: 8 pages, 3 figures; accepted by Phys. Rev.

    Monte Carlo radiative transfer for the nebular phase of Type Ia supernovae

    Get PDF
    We extend the range of validity of the ARTIS 3D radiative transfer code up to hundreds of days after explosion, when Type Ia supernovae (SNe Ia) are in their nebular phase. To achieve this, we add a non-local thermodynamic equilibrium population and ionization solver, a new multifrequency radiation field model, and a new atomic data set with forbidden transitions. We treat collisions with non-thermal leptons resulting from nuclear decays to account for their contribution to excitation, ionization, and heating. We validate our method with a variety of tests including comparing our synthetic nebular spectra for the well-known one-dimensional W7 model with the results of other studies. As an illustrative application of the code, we present synthetic nebular spectra for the detonation of a sub-Chandrasekhar white dwarf (WD) in which the possible effects of gravitational settling of 22Ne prior to explosion have been explored. Specifically, we compare synthetic nebular spectra for a 1.06 M☉ WD model obtained when 5.5 Gyr of very efficient settling is assumed to a similar model without settling. We find that this degree of 22Ne settling has only a modest effect on the resulting nebular spectra due to increased 58Ni abundance. Due to the high ionization in sub-Chandrasekhar models, the nebular [Ni II] emission remains negligible, while the [Ni III] line strengths are increased and the overall ionization balance is slightly lowered in the model with 22Ne settling. In common with previous studies of sub-Chandrasekhar models at nebular epochs, these models overproduce [Fe III] emission relative to [Fe II] in comparison to observations of normal SNe Ia

    CHIANTI - an Atomic Database for Emission Lines. Paper VI: Proton Rates and Other Improvements

    Full text link
    The CHIANTI atomic database contains atomic energy levels, wavelengths, radiative transition probabilities and electron excitation data for a large number of ions of astrophysical interest. Version 4 has been released, and proton excitation data is now included, principally for ground configuration levels that are close in energy. The fitting procedure for excitation data, both electrons and protons, has been extended to allow 9 point spline fits in addition to the previous 5 point spline fits. This allows higher quality fits to data from close-coupling calculations where resonances can lead to significant structure in the Maxwellian-averaged collision strengths. The effects of photoexcitation and stimulated emission by a blackbody radiation field in a spherical geometry on the level balance equations of the CHIANTI ions can now be studied following modifications to the CHIANTI software. With the addition of H I, He I and N I, the first neutral species have been added to CHIANTI. Many updates to existing ion data-sets are described, while several new ions have been added to the database, including Ar IV, Fe VI and Ni XXI. The two-photon continuum is now included in the spectral synthesis routines, and a new code for calculating the relativistic free-free continuum has been added. The treatment of the free-bound continuum has also been updated.Comment: CHIANTI is available at http://wwwsolar.nrl.navy.mil/chianti.htm

    A novel homozygous UMOD mutation reveals gene dosage effects on uromodulin processing and urinary excretion

    Get PDF
    Heterozygous mutations in UMOD\textit{UMOD} encoding the urinary protein uromodulin are the most common genetic cause of autosomal dominant tubulointerstitial kidney disease (ADTKD). We describe the exceptional case of a patient from a consanguineous family carrying a novel homozygous UMOD\textit{UMOD} mutation (p.C120Y) affecting a conserved cysteine residue within the EGF-like domain III of uromodulin. Comparison of heterozygote and homozygote mutation carriers revealed a gene dosage effect with unprecedented low levels of uromodulin and aberrant uromodulin fragments in the urine of the homozygote proband. Despite an amplified biological effect of the homozygote mutation, the proband did not show a strikingly more severe clinical evolution nor was the near absence of urinary uromodulin associated with urinary tract infections or kidney stones.J.A.S. is supported by the Kidney Research Fund and the Medical Research Council (MR/M012212/1). S.A.R. is a Kidney Research UK Post-Doctoral Fellow. O.D. is supported by grants from the European Community’s Seventh Framework Programme (305608 EURenOmics), the Swiss National Centre of Competence in Research Kidney Control of Homeostasis (NCCR Kidney.CH) programme, the Swiss National Science Foundation (31003A_169850) and the Rare Disease Initiative Zu¹rich (Radiz), a clinical research priority program of the University of Zurich, Switzerland. E.O. is supported by the Fonds National de la Recherche Luxembourg (6903109) and the University Research Priority Programme ‘Integrative Human Physiology, ZIHP’ of the University of Zurich

    Radiative transfer with scattering for domain-decomposed 3D MHD simulations of cool stellar atmospheres

    Full text link
    We present the implementation of a radiative transfer solver with coherent scattering in the new BIFROST code for radiative magneto-hydrodynamical (MHD) simulations of stellar surface convection. The code is fully parallelized using MPI domain decomposition, which allows for large grid sizes and improved resolution of hydrodynamical structures. We apply the code to simulate the surface granulation in a solar-type star, ignoring magnetic fields, and investigate the importance of coherent scattering for the atmospheric structure. A scattering term is added to the radiative transfer equation, requiring an iterative computation of the radiation field. We use a short-characteristics-based Gauss-Seidel acceleration scheme to compute radiative flux divergences for the energy equation. The effects of coherent scattering are tested by comparing the temperature stratification of three 3D time-dependent hydrodynamical atmosphere models of a solar-type star: without scattering, with continuum scattering only, and with both continuum and line scattering. We show that continuum scattering does not have a significant impact on the photospheric temperature structure for a star like the Sun. Including scattering in line-blanketing, however, leads to a decrease of temperatures by about 350\,K below log tau < -4. The effect is opposite to that of 1D hydrostatic models in radiative equilibrium, where scattering reduces the cooling effect of strong LTE lines in the higher layers of the photosphere. Coherent line scattering also changes the temperature distribution in the high atmosphere, where we observe stronger fluctuations compared to a treatment of lines as true absorbers.Comment: A&A, in pres

    Planetary nebulae in M33: probes of AGB nucleosynthesis and ISM abundances

    Full text link
    We have obtained deep optical spectrophotometry of 16 planetary nebulae in M33, mostly located in the central two kpc of the galaxy, with the Subaru and Keck telescopes. We have derived electron temperatures and chemical abundances from the detection of the [OIII]4363 line for the whole sample. We have found one object with an extreme nitrogen abundance, 12+log(N/H)=9.20, accompanied by a large helium content. After combining our data with those available in the literature for PNe and HII regions, we have examined the behavior of nitrogen, neon, oxygen and argon in relation to each other, and as a function of galactocentric distance. We confirm the good correlation between Ne/H and O/H for PNe in M33. Ar/H is also found to correlate with O/H. This strengthens the idea that at the metallicity of the bright PNe analyzed in M33, which is similar to that found in the LMC, these elements have not been significantly modified during the dredge-up processes that take place during the AGB phase of their progenitor stars. We find no significant oxygen abundance offset between PNe and HII regions at any given galactocentric distance, despite the fact that these objects represent different age groups in the evolution of the galaxy. Combining the results from PNe and HII regions, we obtain a representative slope of the ISM alpha-element (O, Ar, Ne) abundance gradient in M33 of -0.025 +/- 0.006 dex/kpc. Both PNe and HII regions display a large abundance dispersion at any given distance from the galactic center. We find that the N/O ratio in PNe is enhanced, relative to the HII regions, by approximately 0.8 dex.Comment: 21 pages, 20 figures. Accepted for publication in MNRA

    Faint recombination lines in Galactic PNe with [WC] nucleus

    Full text link
    We present spatially resolved high-resolution spectrophotometric data for the planetary nebulae PB8, NGC2867, and PB6. We have analyzed two knots in NGC2867 and PB6 and one in PB8. The three nebulae are ionized by [WC] type nuclei: early [WO] for PB6 and NGC2867 and [WC 5-6] in the case of PB8. Our aim is to study the behavior of the abundance discrepancy problem (ADF) in this type of PNe. We measured a large number of optical recombination (ORL) and collisionally excited lines (CEL), from different ionization stages (many more than in any previous work), thus, we were able to derive physical conditions from many different diagnostic procedures. We determined ionic abundances from the available collisionally excited lines and recombination lines. Based on both sets of ionic abundances, we derived total chemical abundances in the nebulae using suitable ionization correction factors. From CELs, we have found abundances typical of Galactic disk planetary nebulae. Moderate ADF(O++) were found for PB8 (2.57) and NGC2867 (1.63). For NGC2867, abundances from ORLs are higher but still consistent with Galactic disk planetary nebulae. On the contrary, PB8 presents a very high O/H ratio from ORLs. A high C/O was obtained from ORLs for NGC2867; this ratio is similar to C/O obtained from CELs and with the chemical composition of the wind of the central star, indicating that there was no further C-enrichment in the star, relative to O, after the nebular material ejection. On the contrary, we found C/O<1 in PB8. Interestingly, we obtain (C/O)ORLs/(C/O)CELs < 1 in PB8 and NGC2867; this added to the similarity between the heliocentric velocities measured in [OIII] and OII lines for our three objects, argue against the presence of H-deficient metal-rich knots coming from a late thermal pulse event.Comment: 25 pages, 13 Tables, 4 Figures Accepted for publication in A&A. First page is blank for obscure latex reason

    A CEP104-CSPP1 Complex Is Required for Formation of Primary Cilia Competent in Hedgehog Signaling

    Get PDF
    CEP104 is an evolutionarily conserved centrosomal and ciliary tip protein. CEP104 loss-of-function mutations are reported in patients with Joubert syndrome, but their function in the etiology of ciliopathies is poorly understood. Here, we show that cep104 silencing in zebrafish causes cilia-related manifestations: shortened cilia in Kupffer's vesicle, heart laterality, and cranial nerve development defects. We show that another Joubert syndrome-associated cilia tip protein, CSPP1, interacts with CEP104 at microtubules for the regulation of axoneme length. We demonstrate in human telomerase reverse transcriptase-immortalized retinal pigmented epithelium (hTERT-RPE1) cells that ciliary translocation of Smoothened in response to Hedgehog pathway stimulation is both CEP104 and CSPP1 dependent. However, CEP104 is not required for the ciliary recruitment of CSPP1, indicating that an intra-ciliary CEP104-CSPP1 complex controls axoneme length and Hedgehog signaling competence. Our in vivo and in vitro analyses of CEP104 define its interaction with CSPP1 as a requirement for the formation of Hedgehog signaling-competent cilia, defects that underlie Joubert syndrome
    • 

    corecore