5,960 research outputs found

    Infrared Line Emission from Planetary Nebulae. I - General Theory

    Get PDF
    General theory of infrared line emission from planetary nebul

    SPH Simulations of Direct Impact Accretion in the Ultracompact AM CVn Binaries

    Full text link
    The ultracompact binary systems V407 Vul (RX J1914.4+2456) and HM Cnc (RX J0806.3+1527) - a two-member subclass of the AM CVn stars - continue to pique interest because they defy unambiguous classification. Three proposed models remain viable at this time, but none of the three is significantly more compelling than the remaining two, and all three can satisfy the observational constraints if parameters in the models are tuned. One of the three proposed models is the direct impact model of Marsh & Steeghs (2002), in which the accretion stream impacts the surface of a rapidly-rotating primary white dwarf directly but at a near-glancing angle. One requirement of this model is that the accretion stream have a high enough density to advect its specific kinetic energy below the photosphere for progressively more-thermalized emission downstream, a constraint that requires an accretion spot size of roughly 1.2x10^5 km^2 or smaller. Having at hand a smoothed particle hydrodynamics code optimized for cataclysmic variable accretion disk simulations, it was relatively straightforward for us to adapt it to calculate the footprint of the accretion stream at the nominal radius of the primary white dwarf, and thus to test this constraint of the direct impact model. We find that the mass flux at the impact spot can be approximated by a bivariate Gaussian with standard deviation \sigma_{\phi} = 164 km in the orbital plane and \sigma_{\theta} = 23 km in the perpendicular direction. The area of the the 2\sigma ellipse into which 86% of the mass flux occurs is roughly 47,400 km^2, or roughly half the size estimated by Marsh & Steeghs (2002). We discuss the necessary parameters of a simple model of the luminosity distribution in the post-impact emission region.Comment: 24 pages, 5 figures, Accepted for publication in Ap

    Comparing compact binary parameter distributions I: Methods

    Full text link
    Being able to measure each merger's sky location, distance, component masses, and conceivably spins, ground-based gravitational-wave detectors will provide a extensive and detailed sample of coalescing compact binaries (CCBs) in the local and, with third-generation detectors, distant universe. These measurements will distinguish between competing progenitor formation models. In this paper we develop practical tools to characterize the amount of experimentally accessible information available, to distinguish between two a priori progenitor models. Using a simple time-independent model, we demonstrate the information content scales strongly with the number of observations. The exact scaling depends on how significantly mass distributions change between similar models. We develop phenomenological diagnostics to estimate how many models can be distinguished, using first-generation and future instruments. Finally, we emphasize that multi-observable distributions can be fully exploited only with very precisely calibrated detectors, search pipelines, parameter estimation, and Bayesian model inference

    Multibeam bathymetric survey defines coelacanth habitat

    Get PDF
    Marine GeoSolutions (Pty) Ltd was contracted by the National Research Foundation (NRF) of South Africa to undertake a multibeam bathymetric survey of the northern KwaZulu-Natal submarine canyon system to define potential coelacanth habitats for the SA Coelacanth Conservation and Genome Resource Programme. Five survey blocks were defined to include all the known submarine canyons in the area. The survey blocks were systematically surveyed to develop a series of colour-draped bathymetric maps and three-dimensional models of the canyons. These maps were then used to provide information for potential submersible dive sites and produce the basal layer of a marine GIS (Geographical Information System)

    The use of imaging systems to monitor shoreline dynamics

    Get PDF
    The development of imaging systems is nowadays established as one of the most powerful and reliable tools for monitoring beach morphodynamics. Two different techniques for shoreline detection are presented here and, in one case, applied to the study of beach width oscillations on a sandy beach (Pauanui Beach, New Zealand). Results indicate that images can provide datasets whose length and sample interval are accurate enough to resolve inter-annual and seasonal oscillations, and long-term trends. Similarly, imaging systems can be extremely useful in determining the statistics of rip current occurrence. Further improvements in accuracy and reliability are expected with the recent introduction of digital systems

    Induction of p53 protein by gamma radiation in lymphocyte lines from breast cancer and ataxia telangiectasia patients.

    Get PDF
    Exposure of human cells to gamma-radiation causes levels of the tumour-suppressor nuclear protein p53 to increase in temporal association with the decrease in replicative DNA synthesis. Cells from patients with the radiosensitive and cancer-prone disease ataxia telangiectasia (AT) exhibit radioresistant DNA synthesis and show a reduced or delayed gamma-radiation-induced increase in p53 protein levels. We have used Western immunoblotting with semiquantitative densitometry to examine the gamma-radiation-induced levels of p53 protein in 57 lymphoblastoid cell lines (LCLs) derived from patients with AT, carriers of the AT gene, breast cancer patients and normal donors. We confirm the previously reported reduced induction in AT homozygote LCLs (n = 8) compared with normal donor LCLs (n = 17, P = 0.01). We report that AT heterozygote LCLs (n = 5) also have a significantly reduced p53 induction when compared with LCLs from normal donors (n = 17, P = 0.02). The response of breast cancer patient cells was not significantly different from normal donor cells but 18% (5/27) had a p53 response in the AT heterozygote range (95% confidence interval) compared with only 6% (1/17) of the normal donor cells. We found no significant correlation between p53 induction and cellular radiosensitivity in LCLs from breast cancer patients. These methods may be useful in identifying individuals at greater risk of the DNA-damaging effects of ionising radiation

    UK rail workers' perceptions of accident risk factors: An exploratory study

    Get PDF
    Although non-fatal injuries remain a frequent occurrence in Rail work, very few studies have attempted to identify the perceived factors contributing to accident risk using qualitative research methods. This paper presents the results from a thematic analysis of ten interviews with On Track Machine (OTM) operatives. The inductive methodological approach generated five themes, of which two are discussed here in detail, ‘Pressure and fatigue’, and ‘Decision making and errors’. It is concluded that for companies committed to proactive accident risk reduction, irrespective of current injury rates, the collection and analysis of worker narratives and broader psychological data across safety-critical job roles may prove beneficial

    The Turn-On of Mass Transfer in AM CVn Binaries: Implications for RX J0806+1527 and RX J1914+2456

    Get PDF
    We report on evolutionary calculations of the onset of mass transfer in AM CVn binaries, treating the donor's evolution in detail. We show that during the early contact phase, while the mass transfer rate, \Mdot, is increasing, gravity wave (GW) emission continues to drive the binary to shorter orbital period, \Porb. We argue that the phase where \Mdot > 0 and \nudot > 0 (\nu = 1/\Porb) can last between 10310^3 and 10610^6 yrs, significantly longer than previously estimated. These results are applied to RX J0806+1527 (\Porb = 321 s) and RX J914+2456 (\Porb=569 s), both of which have measured \nudot > 0. \emph{Thus, a \nudot > 0 does not select between the unipolar inductor and accretion driven models proposed as the source of X-rays in these systems}. For the accretion model, we predict for RX J0806 that \ddot{\nu} \approx \ee{1.0-1.5}{-28} Hz s2^{-2} and argue that timing observations can probe ν¨\ddot{\nu} at this level with a total 20\approx 20 yr baseline. We also place constraints on each system's initial parameters given current observational data.Comment: 5 pages, 3 figures, accepted to ApJ
    corecore