5,284 research outputs found
Spectroscopic observations of the eclipsing Polar MN Hya (RX J0929--24)
We present low--medium resolution optical spectroscopy of the eclipsing AM
Her system MN Hya (RX J0929--24). We determine the magnetic field strength at
the primary accretion region of the white dwarf to be 42MG from the spacing of
cyclotron features visible during ~0.4--0.7. From spectra taken during the
eclipse we find that the secondary has a M3--4 spectral type. Combined with the
eclipse photometry of Sekiguchi, Nakada & Bassett and an estimate of the
interstellar extinction we find a distance of ~300--700pc. We find unusual line
variations at phase ~0.9: Halpha is seen in absorption and emission. This is at
the same point in the orbital phase that a prominent absorption dip is seen in
soft X-rays.Comment: accepted by MNRAS, 7 pages, 5 fig
SPH Simulations of Direct Impact Accretion in the Ultracompact AM CVn Binaries
The ultracompact binary systems V407 Vul (RX J1914.4+2456) and HM Cnc (RX
J0806.3+1527) - a two-member subclass of the AM CVn stars - continue to pique
interest because they defy unambiguous classification. Three proposed models
remain viable at this time, but none of the three is significantly more
compelling than the remaining two, and all three can satisfy the observational
constraints if parameters in the models are tuned. One of the three proposed
models is the direct impact model of Marsh & Steeghs (2002), in which the
accretion stream impacts the surface of a rapidly-rotating primary white dwarf
directly but at a near-glancing angle. One requirement of this model is that
the accretion stream have a high enough density to advect its specific kinetic
energy below the photosphere for progressively more-thermalized emission
downstream, a constraint that requires an accretion spot size of roughly
1.2x10^5 km^2 or smaller. Having at hand a smoothed particle hydrodynamics code
optimized for cataclysmic variable accretion disk simulations, it was
relatively straightforward for us to adapt it to calculate the footprint of the
accretion stream at the nominal radius of the primary white dwarf, and thus to
test this constraint of the direct impact model. We find that the mass flux at
the impact spot can be approximated by a bivariate Gaussian with standard
deviation \sigma_{\phi} = 164 km in the orbital plane and \sigma_{\theta} = 23
km in the perpendicular direction. The area of the the 2\sigma ellipse into
which 86% of the mass flux occurs is roughly 47,400 km^2, or roughly half the
size estimated by Marsh & Steeghs (2002). We discuss the necessary parameters
of a simple model of the luminosity distribution in the post-impact emission
region.Comment: 24 pages, 5 figures, Accepted for publication in Ap
Investigating the Rotational Phase of Stellar Flares on M dwarfs Using K2 Short Cadence Data
We present an analysis of K2 short cadence data of 34 M dwarfs which have
spectral types in the range M0 - L1. Of these stars, 31 showed flares with a
duration between 10-90 min. Using distances obtained from Gaia DR2
parallaxes, we determined the energy of the flares to be in the range
erg. In agreement with previous studies
we find rapidly rotating stars tend to show more flares, with evidence for a
decline in activity in stars with rotation periods longer than 10 days.
The rotational modulation seen in M dwarf stars is widely considered to result
from a starspot which rotates in and out of view. Flux minimum is therefore the
rotation phase where we view the main starspot close to the stellar disk
center. Surprisingly, having determined the rotational phase of each flare in
our study we find none show any preference for rotational phase. We outline
three scenarios which could account for this unexpected finding. The
relationship between rotation phase and flare rate will be explored further
using data from wide surveys such as NGTS and TESS.Comment: Accepted main Journal MNRA
Swift observations of the 2015 outburst of AG Peg -- from slow nova to classical symbiotic outburst
Symbiotic stars often contain white dwarfs with quasi-steady shell burning on
their surfaces. However, in most symbiotics, the origin of this burning is
unclear. In symbiotic slow novae, however, it is linked to a past thermonuclear
runaway. In June 2015, the symbiotic slow nova AG Peg was seen in only its
second optical outburst since 1850. This recent outburst was of much shorter
duration and lower amplitude than the earlier eruption, and it contained
multiple peaks -- like outbursts in classical symbiotic stars such as Z And. We
report Swift X-ray and UV observations of AG Peg made between June 2015 and
January 2016. The X-ray flux was markedly variable on a time scale of days,
particularly during four days near optical maximum, when the X-rays became
bright and soft. This strong X-ray variability continued for another month,
after which the X-rays hardened as the optical flux declined. The UV flux was
high throughout the outburst, consistent with quasi-steady shell burning on the
white dwarf. Given that accretion disks around white dwarfs with shell burning
do not generally produce detectable X-rays (due to Compton-cooling of the
boundary layer), the X-rays probably originated via shocks in the ejecta. As
the X-ray photo-electric absorption did not vary significantly, the X-ray
variability may directly link to the properties of the shocked material. AG
Peg's transition from a slow symbiotic nova (which drove the 1850 outburst) to
a classical symbiotic star suggests that shell burning in at least some
symbiotic stars is residual burning from prior novae.Comment: Accepted by MNRAS 23 June 2016. Manuscript submitted in original form
5 April 201
The Turn-On of Mass Transfer in AM CVn Binaries: Implications for RX J0806+1527 and RX J1914+2456
We report on evolutionary calculations of the onset of mass transfer in AM
CVn binaries, treating the donor's evolution in detail. We show that during the
early contact phase, while the mass transfer rate, \Mdot, is increasing,
gravity wave (GW) emission continues to drive the binary to shorter orbital
period, \Porb. We argue that the phase where \Mdot > 0 and \nudot > 0
(\nu = 1/\Porb) can last between and yrs, significantly longer
than previously estimated. These results are applied to RX J0806+1527 (\Porb =
321 s) and RX J914+2456 (\Porb=569 s), both of which have measured \nudot >
0. \emph{Thus, a \nudot > 0 does not select between the unipolar inductor
and accretion driven models proposed as the source of X-rays in these systems}.
For the accretion model, we predict for RX J0806 that \ddot{\nu} \approx
\ee{1.0-1.5}{-28} Hz s and argue that timing observations can probe
at this level with a total yr baseline. We also place
constraints on each system's initial parameters given current observational
data.Comment: 5 pages, 3 figures, accepted to ApJ
A search for electron cyclotron maser emission from compact binaries
Unipolar induction (UI) is a fundamental physical process, which occurs when
a conducting body transverses a magnetic field. It has been suggested that UI
is operating in RX J0806+15 and RX J1914+24, which are believed to be
ultra-compact binaries with orbital periods of 5.4 min and 9.6 min
respectively. The UI model predicts that those two sources may be electron
cyclotron maser sources at radio wavelengths. Other systems in which UI has
been predicted to occur are short period extra-solar terrestrial planets with
conducting cores. If UI is present, circularly polarised radio emission is
predicted to be emitted. We have searched for this predicted radio emission
from short period binaries using the VLA and ATCA. In one epoch we find
evidence for a radio source, coincident in position with the optical position
of RX J0806+15. Although we cannot completely exclude that this is a chance
alignment between the position of RX J0806+15 and an artifact in the data
reduction process, the fact that it was detected at a significance level of 5.8
sigma and found to be transient, suggests that it is more likely that RX
J0806+15 is a transient radio source. We find an upper limit on the degree of
circular polarisation to be ~50%. The inferred brightness temperature exceeds
10^18 K, which is too high for any known incoherent process, but is consistent
with maser emission and UI being the driving mechanism. We did not detect radio
emission from ES Cet, RX J1914+24 or Gliese 876.Comment: Accepted for publication MNRA
The use of imaging systems to monitor shoreline dynamics
The development of imaging systems is nowadays established as one of the most powerful and reliable tools for monitoring beach morphodynamics. Two different techniques for shoreline detection are presented here and, in one case, applied to the study of beach width oscillations on a sandy beach (Pauanui Beach, New Zealand). Results indicate that images can provide datasets whose length and sample interval are accurate enough to resolve inter-annual and seasonal oscillations, and long-term trends. Similarly, imaging systems can be extremely useful in determining the statistics of rip current occurrence. Further improvements in accuracy and reliability are expected with the recent introduction of digital systems
A burst from the direction of UZ Fornacis with XMM-Newton
The XMM-Newton pointing towards the magnetic cataclysmic variable UZ For
finds the source to be a factor > 10^3 fainter than previous EXOSAT and ROSAT
observations. The source was not detected for the majority of a 22 ksec
exposure with the EPIC cameras, suggesting that the accretion rate either
decreased, or stopped altogether. However a 1.1 ksec burst was detected from UZ
For during the observation. Spectral fits favour optically thin, kT = 4.4 keV
thermal emission. Detection of the burst by the on-board Optical Monitor
indicates that this was most probably an accretion event. The 0.1-10 keV
luminosity of 2.1 x 10^30 erg/s is typical for accretion shock emission from
high state polars and would result from the potential energy release of ~ 10^16
g of gas. There is no significant soft excess due to reprocessing in the white
dwarf atmosphere.Comment: 7 pages, 2 postscript figures, ApJL, in pres
- …