26 research outputs found
Expression of heat shock protein 32 (hemoxygenase-1) in the normal and inflamed human stomach and colon: an immunohistochemical study
Heat shock protein 32 (Hsp32, hemoxygenase-1) is induced by reactive oxygen metabolites (ROM) and degrades heme leading to the formation of antioxidant bilirubin. Increased mucosal generation of ROM occurs in gastritis and inflammatory bowel disease. We aimed to assess mucosal expression of Hsp32 in normal stomach and colon and to test the hypothesis that disease-related differential expression occurs in inflamed tissue. Gastric body and antral mucosal biopsies were obtained from 33 patients comprising Helicobacter pylori–negative normal controls (n = 8), H pylori–negative gastritis patients (n = 11), and H pylori–positive gastritis patients (n = 14). Forty-seven archival colonic mucosal biopsies selected comprised normal histology (n = 10), active ulcerative colitis (UC) (n = 9), inactive UC (n = 8), active Crohn's disease (CD) (n = 8), inactive CD (n = 6), and other colitides (n = 6). Hsp32 expression in formalin-fixed sections was assessed by avidin-biotin peroxidase immunohistochemistry using a polyclonal rabbit anti-Hsp32 as the primary antibody. Immunohistochemical staining identified Hsp32 in all groups. Diffuse cytoplasmic staining was seen in gastric and colonic epithelial and lamina proprial inflammatory cells. Staining scores for Hsp32 were higher in antral H pylori–positive (P = 0.002) and H pylori–negative (P = 0.02) gastritis than in controls and in body H pylori–positive gastritis than in the other 2 groups (P < 0.01). Expression of Hsp32 was increased in active UC compared with inactive disease (P = 0.03) and normal controls (P = 0.02). In conclusion, Hsp32 is expressed constitutively in normal gastric and colonic mucosa, and differential expression occurs in these tissues when they are inflamed. Upregulation of Hsp32 may be an adaptive response to protect mucosa from oxidative injury in patients with gastritis and inflammatory bowel disease