1,925 research outputs found

    On the magnetic field of off-limb spicules

    Full text link
    Determining the magnetic field related to solar spicules is vital for developing adequate models of these plasma jets, which are thought to play a key role in the thermal, dynamic and magnetic structure of the Chromosphere. Here we report on the magnetic properties of off-limb spicules in a very quiet region of the solar atmosphere, as inferred from new spectropolarimetric observations in the He I 10830 A triplet obtained with the Tenerife Infrared Polarimeter. We have used a novel inversion code for Stokes profiles caused by the joint action of atomic level polarization and the Hanle and Zeeman effects (HAZEL) to interpret the observations. Magnetic fields as strong as ~40G were detected in a very localized area of the slit, which could represent a possible lower value of the field strength of organized network spicules.Comment: Accepted for publication in ApJ, 24 pages, 5 Figure

    Influence of atomic polarization and horizontal illumination on the Stokes profiles of the He I 10830 multiplet

    Get PDF
    The polarization observed in the spectral lines of the He I 10830 multiplet carries valuable information on the dynamical and magnetic properties of plasma structures in the solar chromosphere and corona, such as spicules, prominences, filaments, emerging magnetic flux regions, etc. Here we investigate the influence of atomic level polarization on the emergent Stokes profiles for a broad range of magnetic field strengths, in both 90 degree and forward scattering geometry. We show that, contrary to a widespread belief, the selective emission and absorption processes caused by the presence of atomic level polarization may have an important influence on the emergent linear polarization, even for magnetic field strengths as large as 1000 G. Consequently, the modeling of the Stokes Q and U profiles should not be done by taking only into account the contribution of the transverse Zeeman effect within the framework of the Paschen-Back effect theory, unless the magnetic field intensity of the observed plasma structure is sensibly larger than 1000 G. We point out also that in low-lying optically thick plasma structures, such as those of active region filaments, the (horizontal) radiation field generated by the structure itself may substantially reduce the positive contribution to the anisotropy factor caused by the (vertical) radiation field coming from the underlying solar photosphere, so that the amount of atomic level polarization may turn out to be negligible. Only under such circumstances may the emergent linear polarization of the He I 10830 multiplet in such regions of the solar atmosphere be dominated by the contribution caused by the transverse Zeeman effect.Comment: Accepted for publication in The Astrophysical Journal (It is tentatively scheduled for the ApJ January 20, 2007 issue

    The magnetic field configuration of a solar prominence inferred from spectropolarimetric observations in the He I 10830 A triplet

    Full text link
    Context: The determination of the magnetic field vector in quiescent solar prominences is possible by interpreting the Hanle and Zeeman effects in spectral lines. However, observational measurements are scarce and lack high spatial resolution. Aims: To determine the magnetic field vector configuration along a quiescent solar prominence by interpreting spectropolarimetric measurements in the He I 1083.0 nm triplet obtained with the Tenerife Infrared Polarimeter installed at the German Vacuum Tower Telescope of the Observatorio del Teide. Methods. The He I 1083.0 nm triplet Stokes profiles are analyzed with an inversion code that takes into account the physics responsible of the polarization signals in this triplet. The results are put into a solar context with the help of extreme ultraviolet observations taken with the Solar Dynamic Observatory and the Solar Terrestrial Relations Observatory satellites. Results: For the most probable magnetic field vector configuration, the analysis depicts a mean field strength of 7 gauss. We do not find local variations in the field strength except that the field is, in average, lower in the prominence body than in the prominence feet, where the field strength reaches 25 gauss. The averaged magnetic field inclination with respect to the local vertical is 77 degrees. The acute angle of the magnetic field vector with the prominence main axis is 24 degrees for the sinistral chirality case and 58 degrees for the dextral chirality. These inferences are in rough agreement with previous results obtained from the analysis of data acquired with lower spatial resolutions.Comment: Accepted in A&
    • …
    corecore