1,015 research outputs found

    Une approche géostatistique spatio-temporelle pour la prévision immédiate d'ensemble de pluies

    Get PDF
    3rd European Conference on Flood Risk Management, Lyon, FRA, 17-/10/2016 - 21/10/2016International audienceNowcasting systems are essential to prevent extreme events and reduce their socio-economic impacts. The major challenge of these systems is to capture high-risk situations in advance, with good accuracy, location and time. Uncertainties associated with the precipitation events have an impact on the hydrological forecasts, especially when it concerns localized flash flood events. Radar monitoring can help to detect the space-time evolution of rain fields, but nowcasting techniques are needed to go beyond the observation and provide scenarios of rainfall for the next hours of the event. In this study, we investigate a space-time geostatistical framework to generate multiple scenarios of future rainfall. The rainfall ensemble is generated based on space-time properties of precipitation fields given by radar measurements and rainfall data from rain gauges. The aim of this study is to investigate the potential of a framework that applies a geostatistical conditional simulation method to generate an ensemble nowcasting of rainfall fields. The Var region (south eastern France) and 14 events are used to validate the approach. Results show that the proposed method can be a solution to combine information from radar fields and rain gauges to generate nowcasting rainfall fields adapted for flash flood alert

    Cross-cutting Perspective Freshwater

    Get PDF
    One singularity of northwestern Europe (NWE) is that severe droughts are rare events in the region and water scarcity has hardly been experienced in its history. The DROP pilot sites are not exceptions to this context. Although the lack of a drought history in wet areas can explain why drought and water scarcity are not necessarily the focus of (if ever considered in) river basin management plans, it must be noted that freshwater availability for drinking water provision remains a priority stake in both quantitative and qualitative aspects. Providing a reliable and safe supply of drinking water may thus be a leading entryway to the development of drought risk awareness and drought adaptation measures in a river basin. When such essential resource is threatened and the competition for water among users increases, there is a good chance that reflections and changes will be triggered. Water use conflicts and drinking water supply threats may arise due to increased water demand, but also due to decreased water availability. The later may occur because of natural climate variability, i.e., drier years than average, or as the result of the impact of climate change on local water resources. Climate change awareness is then an important asset to manage water availability. Where climate change awareness is low and adaptation measures are basically inexistent, social and political responses to drought adaptation may be slow and inefficient. However, even in those cases where climate change awareness is still low in general society, water authorities and other stakeholders are conscious that water demand tends to intensify with population and economic growth, rendering water scarcity conceivable and even foreseeable. Freshwater availability for drinking water supply is therefore an issue that can motivate the introduction of drought and water scarcity risks into the political and public agenda , even in “ drought-scarce ” regions. This chapter highlights the links between drought governance and the vulnerability of freshwater for drinking water supply, with a focus on drought adaptation. The main issues presented here are illustrated with how freshwater issues are managed in the DROP project cases with a particular focus on the two “ freshwater reservoir ” pilot sites: the Arzal dam in Brittany France (see Chap. 6 ) and the Eifel-Rur in Germany (see Chap. 4 ). Those two cases deal with reservoir management not only for drinking water supply (Fig. 11.1 ) but also for other uses, with various priority sets

    Evidence of the spin Seebeck effect in Ni-Zn ferrites polycrystalline slabs

    Get PDF
    We report on the observation of the spin Seebeck effect in Ni-Zn ferrites slabs with different Zn concentration. All samples have a spinel structure confirmed by XRD and TEM. We fully characterize the magnetic properties by VSM and Mössbauer spectroscopy. Samples exhibit a nonmonotonic magnetization behavior depending on the structural inversion parameter, however we found a spin Seebeck response voltage of about 25.5 nV/K independent of the magnetization and the inversion degree

    Rainfall hazard assessment : a geostatistically based methodology

    Get PDF
    International audienc

    Estimation de l'alea pluviométrique : une approche géostatistique

    Get PDF

    Comment passer d'un modèle hydrologique à un système de prévision des crues? Ecueils liés à la structure des modèles et aux échelles d'espace et de temps

    Get PDF
    Les modèles hydrologiques Pluie Débit sont des outils très utiles pour la prévision des crues. À l'heure actuelle, il n'est pas possible d'utiliser directement les modèles de simulation pour effectuer une bonne prévision. Nous explorons ici les différences entre modèles de simulation et modèles de prévision. Puis nous examinons l'importance relative des informations apportées au modèle : dans le passé, les forçages climatiques et les dernières observations de débit ; dans le futur, les prévisions de précipitations. La question des échelles spatiales est ensuite abordée et les limites d'une approche globale sont discutées dans une perspective opérationnelle. / Rainfall Runoff models are very useful tools for flood forecasting. As of today, the direct use of simulation models is not possible to get accurate predictions especially when it concerns short-term forecasting. In this paper, we explore the main differences between simulation and forecasting models. Then we assess the relative importance of every information provided to the model: the past climatic forcing and the last observed discharges; the future precipitation scenarios. Spatial scales are also examined and the limits of a global forecasting approach for operational purposes are discussed

    Temperature dependence of the spin Seebeck effect in [Fe3O4/Pt]n multilayers

    Get PDF
    We report temperature dependent measurements of the spin Seebeck effect (SSE) in multilayers formed by repeated growth of a Fe3O4/Pt bilayer junction. The magnitude of the observed enhancement of the SSE, relative to the SSE in the single bilayer, shows a monotonic increase with decreasing the temperature. This result can be understood by an increase of the characteristic length for spin current transport in the system, in qualitative agreement with the recently observed increase in the magnon diffusion length in Fe3O4 at lower temperatures. Our result suggests that the thermoelectric performance of the SSE in multilayer structures can be further improved by careful choice of materials with suitable spin transport properties

    Physiological and biochemical responses to low non-freezing temperature of two Eucalyptus globulus clones differing in drought resistance

    Get PDF
    Abstract – We have compared the metabolic responses of leaves and roots of two Eucalyptus globulus L. clones CN5 and ST51 that differ in their sensitivity to water deficits (ST51 is more drought sensitive), with regard to the effect of chilling (10/5 ◦C, day/night). We studied changes in growth, osmotic potential and osmotically active compounds, soluble proteins, leaf pigments, and membrane lipid composition. Our data showed that both clones have the ability to acclimatize to chilling temperatures. As a result of 10 days of acclimation, an increase of soluble sugars in leaves of treated plants of both clones was observed that disappeared later on. Differences between clones were observed in the photosynthetic pigments and soluble protein content which were more stable in CN5 under chilling. It also was apparent that CN5 presented a less negative predawn water potential (ψpd) and a higher leaf turgor than ST51 throughout the chilling treatment. In the case of the CN5, increased total lipids (TFA) and concomitant increase of linolenic acid (C18:3) in leaves after acclimatization may be related to a better clone performance under chilling temperatures. Moreover, a higher constitutive investment in roots in the case of CN5 as compared to ST51 may benefit new root regeneration under low temperatures favoring growth after cold Mediterranean winter

    Spin Seebeck effect in insulating epitaxial ¿-Fe2O3 thin films

    Get PDF
    We report the fabrication of high crystal quality epitaxial thin films of maghemite (¿-Fe2O3), a classic ferrimagnetic insulating iron oxide. Spin Seebeck effect (SSE) measurements in ¿-Fe2O3/Pt bilayers as a function of sample preparation conditions and temperature yield a SSE coefficient of 0.5(1) µV/K at room temperature. Dependence on temperature allows us to estimate the magnon diffusion length in maghemite to be in the range of tens of nanometers, in good agreement with that of conducting iron oxide magnetite (Fe3O4), establishing the relevance of spin currents of magnonic origin in magnetic iron oxides

    What are the advantages of living in a community? A microbial biofilm perspective!

    Get PDF
    Biofilm formation is the preferred mode of growth lifestyle for many microorganisms, including bacterial and fungal human pathogens. Biofilm is a strong and dynamic structure that confers a broad range of advantages to its members, such as adhesion/cohesion capabilities, mechanical properties, nutritional sources, metabolite exchange platform, cellular communication, protection and resistance to drugs (e.g., antimicrobials, antiseptics, and disinfectants), environmental stresses (e.g., dehydration and ultraviolet light), host immune attacks (e.g., antibodies, complement system, antimicrobial peptides, and phagocytes), and shear forces. Microbial biofilms cause problems in the hospital environment, generating high healthcare costs and prolonged patient stay, which can result in further secondary microbial infections and various health complications. Consequently, both public and private investments must be made to ensure better patient management, as well as to find novel therapeutic strategies to circumvent the resistance and resilience profiles arising from biofilm-associated microbial infections. In this work, we present a general overview of microbial biofilm formation and its relevance within the biomedical context
    corecore