9 research outputs found

    Fabrication, characterization, and photovoltaic performance of titanium dioxide/metal-organic framework composite

    Get PDF
    The titanium dioxide-metal-organic framework (TiO2−MOF) composite was prepared using the sol-gel method for photovoltaic applications. Raman analyses showed the presence of MOF clusters in the TiO2 sol-gel network. Using the Brunauer-Emmett-Teller method, the resultant composite material exhibited a surface area of 111.10 m2 g−1 as compared to the surface area values of 262.90 and 464.76 m2 g−1 for TiO2 and MOF, respectively. The small optical band gap values of 2.63 for direct electronic transition and 2.70 eV for indirect allowed electronic transition in TiO2/MOF composite were observed using ultraviolet-visible supported by cyclic voltammetry (CV)

    Synthesis and photovoltaics of novel 2,3,4,5-tetrathienylthiophene-co-poly(3-hexylthiophene-2,5-diyl) donor polymer for organic solar cell

    Get PDF
    This report focuses on the synthesis of novel 2,3,4,5-tetrathienylthiophene-co-poly(3-hexylthiophene-2,5-diyl) (TTT-co-P3HT) as a donor material for organic solar cells (OSCs). The properties of the synthesized TTT-co-P3HT were compared with those of poly(3-hexylthiophene-2,5-diyl (P3HT). The structure of TTT-co-P3HT was studied using nuclear magnetic resonance spectroscopy (NMR) and Fourier-transform infrared spectroscopy (FTIR). It was seen that TTT-co-P3HT possessed a broader electrochemical and optical band-gap as compared to P3HT. Cyclic voltammetry (CV) was used to determine lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO) energy gaps of TTT-co-P3HT and P3HT were found to be 2.19 and 1.97 eV, respectively. Photoluminescence revealed that TTT-co-P3HT:PC71 BM have insuffi-cient electron/hole separation and charge transfer when compared to P3HT:PC71 BM. All devices were fabricated outside a glovebox. Power conversion efficiency (PCE) of 1.15% was obtained for P3HT:PC71 BM device and 0.14% was obtained for TTT-co-P3HT:PC71 BM device. Further studies were done on fabricated OSCs during this work using electrochemical methods

    Enhanced photovoltaic effects of microwave-assisted polyolsynthesized Cu2(Pd/Zn)SnS4 kesterite nanoparticles

    Get PDF
    Kesterite materials show excellent optical and semiconductive properties for use as petype absorber layer in photovoltaic (PV) applications, but they have a high open circuit voltage deficit (Voc,def) due to high antisite defect and secondary phase formation, resulting in poor device performance. This work reports a PV cell composed of Cu2PdSnS4 (CPTS) nanoparticles as an absorber layer yielding highly improved Voc of 900 mV, which is two times that of fabricated pristine Cu2ZnSnS4 (CZTS) PV cell. Improved PV cell parameters such as fillefactor (FF) of 83.4% and power conversion efficiency (PCE) of 1.01% were obtained for CPTS devices which are 3efold that of pristine CZTS devices. Optical studies revealed enhanced redshift absorption for CPTS nanoparticles. Electrochemical studies show improved current production, high electron mobility and low charge resistance for CPTS nanoparticles. This study shows that the improved photovoltaic properties can be attributed to enhancement in the bulk properties when Zn atoms are replaced by Pd atoms in kesterite nanomaterials as absorber layer material for PV applications

    Synthesis and reactivities of conducting hexathienylbenzene-co-poly(3-hexylthiophene) star-branched copolymer as donor material for organic photovoltaic cell

    Get PDF
    The hexathienylbenzene-co-poly(3-hexylthiophene-2,5diyl) (HTB-co-P3HT) conducting polymer was synthesized by oxidative co-polymerization of hexathienylbenzene (HTB) and 3-hexylthiophene using iron chloride (FeCl3) as an oxidant. The effect of chlorobenzene, toluene and chloroform on the optoelectronic characteristics of the polymer was investigated. The study revealed that spectroscopic and electrochemical responses of HTB-co-P3HT are affected by the nature of the solvent. The lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO) energy levels of HTB-co-P3HT were determined from cyclic voltammetry (CV) and were compared to those of (6,6)-Phenyl C71 butyric acid methyl ester (PC71BM) and it was found that the LUMO energy levels of HTB-co-P3HT in toluene were lower than those for chlorobenzene and chloroform

    Synthesis and Photovoltaics of Novel 2,3,4,5-Tetrathienylthiophene-co-poly(3-hexylthiophene-2,5-diyl) Donor Polymer for Organic Solar Cell

    No full text
    This report focuses on the synthesis of novel 2,3,4,5-tetrathienylthiophene-co-poly(3-hexylthiophene-2,5-diyl) (TTT-co-P3HT) as a donor material for organic solar cells (OSCs). The properties of the synthesized TTT-co-P3HT were compared with those of poly(3-hexylthiophene-2,5-diyl (P3HT). The structure of TTT-co-P3HT was studied using nuclear magnetic resonance spectroscopy (NMR) and Fourier-transform infrared spectroscopy (FTIR). It was seen that TTT-co-P3HT possessed a broader electrochemical and optical band-gap as compared to P3HT. Cyclic voltammetry (CV) was used to determine lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO) energy gaps of TTT-co-P3HT and P3HT were found to be 2.19 and 1.97 eV, respectively. Photoluminescence revealed that TTT-co-P3HT:PC71BM have insufficient electron/hole separation and charge transfer when compared to P3HT:PC71BM. All devices were fabricated outside a glovebox. Power conversion efficiency (PCE) of 1.15% was obtained for P3HT:PC71BM device and 0.14% was obtained for TTT-co-P3HT:PC71BM device. Further studies were done on fabricated OSCs during this work using electrochemical methods. The studies revealed that the presence of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) on the surface of indium tin oxide (ITO) causes a reduction in cyclic voltammogram oxidation/reduction peak current and increases the charge transfer resistance in comparison with a bare ITO. We also examined the ITO/PEDOT:PSS electrode coated with TTT-co-P3HT:PC71BM, TTT-co-P3HT:PC71BM/ZnO, P3HT:PC71BM and P3HT:PC71BM/ZnO. The study revealed that PEDOT:PSS does not completely block electrons from active layer to reach the ITO electrode

    Microscopic, Spectroscopic, and Electrochemical Characterization of Novel Semicrystalline Poly(3-hexylthiophene)-Based Dendritic Star Copolymer

    No full text
    In this study, electron-donating semicrystalline generation 1 poly(propylene thiophenoimine)-co-poly(3-hexylthiophene) star copolymer, G1PPT-co-P3HT was chemically prepared for the first time. Copolymerization was achieved with high molecular weight via facile green oxidative reaction. 1H NMR analyses of the star copolymer demonstrated the presence of 84% regioregular (rr) head-to-tail (HT) P3HT, which accounts for the molecular ordering in some grain regions in the macromolecule’s morphology, as revealed by the high-resolution scanning electron microscopy (HRSEM) and Selected Area Electron Diffraction (SAED) images, and X-ray diffraction spectroscopy (XRD) measurements. The star copolymer also exhibited good absorption properties in the ultraviolet-visible (UV-Vis) and the near infrared (NIR) spectral regions, which give rise to an optical energy bandgap value as low as 1.43 eV. A HOMO energy level at −5.53 eV, which is below the air-oxidation threshold, was obtained by cyclic voltammetry (CV). Electrochemical impedance spectroscopy (EIS) ascertained the semiconducting properties of the macromolecule, which is characterized by a charge transfer resistance, Rct, value of 3.57 kΩ and a Bode plot-phase angle value of 75°. The combination of the EIS properties of G1PPT-co-P3HT and its highly electron-donating capability in bulk heterojunction (BHJ) active layer containing a perylene derivative, as demonstrated by photoluminescence quenching coupled to the observed Förster Resonance charge transfer, suggests its suitability as an electron-donor material for optoelectronic and photovoltaic devices

    π-Conjugated Polymers and Their Application in Organic and Hybrid Organic-Silicon Solar Cells

    No full text
    The evolution and emergence of organic solar cells and hybrid organic-silicon heterojunction solar cells have been deemed as promising sustainable future technologies, owing to the use of π-conjugated polymers. In this regard, the scope of this review article presents a comprehensive summary of the applications of π-conjugated polymers as hole transporting layers (HTLs) or emitters in both organic solar cells and organic-silicon hybrid heterojunction solar cells. The different techniques used to synthesize these polymers are discussed in detail, including their electronic band structure and doping mechanisms. The general architecture and principle of operating heterojunction solar cells is addressed. In both discussed solar cell types, incorporation of π-conjugated polymers as HTLs have seen a dramatic increase in efficiencies attained by these devices, owing to the high transmittance in the visible to near-infrared region, reduced carrier recombination, high conductivity, and high hole mobilities possessed by the p-type polymeric materials. However, these cells suffer from long-term stability due to photo-oxidation and parasitic absorptions at the anode interface that results in total degradation of the polymeric p-type materials. Although great progress has been seen in the incorporation of conjugated polymers in the various solar cell types, there is still a long way to go for cells incorporating polymeric materials to realize commercialization and large-scale industrial production due to the shortcomings in the stability of the polymers. This review therefore discusses the progress in using polymeric materials as HTLs in organic solar cells and hybrid organic-silicon heterojunction solar cells with the intention to provide insight on the quest of producing highly efficient but less expensive solar cells

    Electronics of Anion Hot Injection-Synthesized Te-Functionalized Kesterite Nanomaterial

    No full text
    Metal chalcogenides such as copper zinc tin sulfide (CZTS) have been intensively studied as potential photovoltaic cell materials, but their viability have been marred by crystal defects and low open circuit potential (Voc) deficit, which affected their energy conversion efficiency. Strategies to improve on the properties of this material such as alloying with other elements have been explored and have yielded promising results. Here, we report the synthesis of CZTS and the partial substitution of S with Te via anion hot injection synthesis method to form a solid solution of a novel kesterite nanomaterial, namely, copper zinc tin sulfide telluride (CZTSTe). Particle-size analyzed via small angle X-ray scattering spectroscopy (SAXS) confirmed that CZTS and CZTSTe materials are nanostructured. Crystal planes values of 112, 200, 220 and 312 corresponding to the kesterite phase with tetragonal modification were revealed by the X-ray diffraction (XRD) spectroscopic analysis of CZTS and CZTSTe. The Raman spectroscopy confirmed the shifts at 281 cm−1 and 347 cm−1 for CZTS, and 124 cm−1, 149 cm−1 and 318 cm−1 for CZTSTe. High degradation rate and the production of hot electrons are very detrimental to the lifespan of photovoltaic cell (PVC) devices, and thus it is important to have PVC absorber layer materials that are thermally stable. Thermogravimetric analysis (TGA) analysis indicated a 10% improvement in the thermal stability of CZTSTe compared to CZTS at 650 °C. With improved electrical conductivity, low charge transfer resistance (Rct) and absorption in the visible region with a low bandgap energy (Eg) of 1.54 eV, the novel CZTSTe nanomaterials displayed favorable properties for photovoltaics application

    Highly Electro-Conductive Thiophene and N-methylpyrrole functionalized hyperbranched polypropylenimine tetramine-co-poly(3-hexylthiophene-2,5-diyl) donor materials for organic solar cells

    No full text
    Poly(3-hexylthiophene-2,5-diyl) (P3HT) chains were grown on the surface of thiophene functionalized polypropylenimine tetramine (PPI-TH) and N-methylpyrrole functionalized polypropylenimine tetramine (PPI-PY) using chemical oxidation polymerization. After growing the P3HT chains on the surface of PPI-TH and PPI-PY, the properties of the resulting co-polymers were compared with those of linear P3HT as a reference. P3HT, poly(3-hexylthiophene-2,5-diyl)-co-thiophene functionalized polypropylenimine tetramine (P3HT-T), and poly(3-hexylthiophene-2,5-diyl)-co-N-methylpyrrole functionalized polypropylenimine tetramine (P3HT-P) were characterized by nuclear magnetic resonance (NMR), Fourier-transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA), ultraviolet-visible spectroscopy (UV-Vis), scanning electron microscope (SEM), photoluminescence and electrochemical methods. P3HT-T and P3HT-P showed new imine bands on FTIR spectra, change in morphology and optical bandgaps, Stokes shifts, decrease in LUMO energy gap values, and increase in conductivity compared to P3HT. In addition, organic solar cells (OSCs) based on P3HT, P3HT-T, and P3HT-P as donor materials are discussed in this work. In comparison with P3HT-based OSC, the P3HT-T and P3HT-P based OSCs have improved performance due to an increase in VOC and FF. Electrochemical impedance spectroscopy (EIS) and Tafel plots confirmed a reduction in charge recombination and an increase in charge transport for P3HT-T and P3HT-P devices
    corecore