73 research outputs found

    Synergistic Inhibition of Methicillin-Resistant Staphylococcus aureus (MRSA) by Melaleuca alternifolia Chell (Tea Tree) and Eucalyptus globulus Labill. Essential Oils in Association with Oxacillin

    Get PDF
    The presence of antibiotic-resistant bacteria has become a major therapeutic priority. This trend indicates the need for alternative agents to antibiotics, such as natural compounds of plant origin. By assessing membrane permeability, we investigated the antimicrobial activity of Melaleuca alternifolia and Eucalyptus globulus essential oils (EOs) against three strains of methicillin-resistant Staphylococcus aureus (MRSA). Using the checkerboard method, the efficacy of single EOs, in association with each other or in combination with oxacillin, was quantified by calculating the fractional inhibitory concentrations (FIC Index). All EOs showed a reduction in bacterial load, an alteration of membrane permeability which leads to an increase in its function, resulting in the release of nucleic acids and proteins. The treatment with EO–oxacillin combinations and associated EO–EO resulted in a synergistic effect in most of the tests performed. EO–EO association showed a high activity in the alteration of the membrane, increasing the permeability to about 80% in all the MRSA strains treated. In conclusion, the combination of EOs and antibiotics represents a valid therapeutic support against MRSA bacteria, allowing for a decrease in the antibiotic concentration needed for therapeutic use

    Molecular Characterization of Klebsiella Pneumonia in Clinical Isolates with High Resistance toward Carbapenemases

    Get PDF
    Carbapenem-resistant Enterobacteriaceae (CRE) is spreading in worldwide and has become endemic in several countries, including Italy . In this report we present the phenotypic and molecular characterizations of KPC-producing carbapenem-resistant K. pneumoniae clinical isolates in an Italian hospital

    Essential Oils and Bacteriocin-Based Active Edible Coating: An Innovative, Natural and Sustainable Approach for the Control of Listeria monocytogenes in Seafoods

    Get PDF
    The anti-Listeria monocytogenes activity of four essential oils (EOs) (Salvia officinalis, Citrus limon, Mentha piperita and Thymus vulgaris) and bacteriocin bacLP17, added alone or in mixture in active edible coatings, was determined in artificially contaminated shrimps. The minimal inhibitory concentration (MIC) values of the EOs were determined against the NCTC 10888 strain of L. monocytogenes by using the broth microdilution method. The checkerboard method was carried out in tryptic soy broth (TSB), using microdilution to obtain the Fractional Inhibitory Concentration Index (FIC-Index) for six associations of EOs, chosen based on the best MIC results. All the EOs confirmed their anti-Listeria activity, both “in vitro” and inside the coatings. The coating matrix was suitable for use in the food field, allowing a gradual release of the EOs in packaged food. When the EOs were used in association (EO/EO) they were demonstrated to act synergistically, leading to a significant reduction in the amount (10–20 times) of EOs needing to be used, and consequently a decrease in the strong smell on the food. This effect was also confirmed when the compounds were incorporated into the coatings. The inclusion of the EOs within the coating not only ensured the anti-Listeria activity by increasing the shelf-life of food products, but also further mitigated the strong smell of the EOs, improving the organoleptic impact on the food and its sensory properties. Keywords: Listeria monocytogenes; shrimp; essential oils; bacteriocin; edible coating

    Eco-Friendly Edible Packaging Systems Based on Live-Lactobacillus kefiri MM5 for the Control of Listeria monocytogenes in Fresh Vegetables

    Get PDF
    To meet consumer requirements for high quality food free of chemical additives, according to the principles of sustainability and respect for the environment, new “green” packaging solutions have been explored. The antibacterial activity of edible bioactive films and coatings, based on biomolecules from processing by-products and biomasses, added with the bacteriocin producer Lactobacillus kefiri MM5, has been determined in vegetables against L. monocytogenes NCTC 10888 (i) “in vitro” by a modified agar diffusion assay and (ii) “on food” during storage of artificially contaminated raw vegetable samples, after application of active films and coatings. Both polysaccharides-based and proteins-based films and coatings showed excellent antilisterial activity, especially at 10 and 20 days. Protein-based films displayed a strong activity against L. monocytogenes in carrots and zucchini samples (p < 0.0001). After 10 days, both polysaccharide-based and protein-based films demonstrated more enhanced activity than coatings towards the pathogen. These edible active packagings containing live probiotics can be used both to preserve the safety of fresh vegetables and to deliver a beneficial probiotic bacterial strain. The edible ingredients used for the formulation of both films and coatings are easily available, at low cost and environmental impact

    Antilisterial Activity of Bacteriocins Produced by Lactic Bacteria Isolated from Dairy Products

    Get PDF
    Sixty-nine Lactic Acid Bacteria (LAB) and bifidobacteria were isolated and identified from Italian dairy products (raw milk, cream, butter, soft cheese and yoghurt) to find new antimicrobial compounds to use as food bio-preservatives. All the isolates were preliminarily screened by the deferred antagonism method for bacteriocin production. Afterwards, to evaluate the release of bacteriocin in liquid medium, the Cell-Free Supernatant Fluid (CFSF) of the best producers was tested by agar well diusion assay. The study allowed the selection of three bacteriocin producing strains (Enterococcus faecium E23, Bifidobacterium thermophilum B23 and Lactobacillus bulgaricus L21), endowed with the strongest and broadest inhibitory capability against the pathogen Listeria monocytogenes. The molecular characteristics and the chemical–physical properties of both producers and the respective bacteriocins were studied and compared. The results showed that E. faecium E23 was the best producer strain and its class IIa bacteriocins, called enterocin E23, exhibited a good spectrum of activity towards L. monocytogenes. Enterocin E23 was stable over a wide range of pH and at low temperatures for at least four months and, for this reason, it can be employed in refrigerated foods for the control of L. monocytogenes, the major concern in dairy products

    In vitro evaluation of the amoebicidal activity of rosemary (Rosmarinus officinalis L.) and cloves (Syzygium aromaticum L. Merr. & Perry) essential oils against Acanthamoeba polyphaga trophozoites

    Get PDF
    Several species of the genus Acanthamoeba cause human diseases. Treatment of infections involves various problems, emphasising the need to develop alternative antiprotozoal agents. We studied the anti-amoebic activity of Essential Oils (EOs), derived from rosemary (Rosmarinus officinalis L.) and cloves (Syzygium aromaticum L. Merr. & Perry), against Acanthamoeba polyphaga strain. The amoebicidal activity of cloves and rosemary EOs was preliminary demonstrated by the morphology change (modifications in the cell shape, the presence of precipitates in the cytoplasm, autophagic vesicles, membrane blends) of the treated trophozoites. The cell-counts, carried out after staining trophozoites with a Trypan blue solution, revealed that both EOs were active in a dose-dependent manner and in relation to the exposure time. This activity was evident after few hours, with encouraging results obtained in particular with cloves EO, able to act at the lower concentrations and after 1Ă‚ h, probably for its high eugenol content (65.30%)
    • …
    corecore