3 research outputs found

    Short-Term Changes in Weather Conditions and the Risk of Acute Coronary Syndrome Hospitalization with and without ST-Segment Elevation: A Focus on Vulnerable Subgroups

    No full text
    Background and Objectives: Acute coronary syndrome (ACS), a prevalent global cardiovascular disease and leading cause of mortality, is significantly correlated with meteorological factors. This study aims to analyze the impact of short-term changes in meteorological factors on the risk of ACS, both with and without ST-segment elevation, and to identify vulnerable subgroups. Materials and Methods: Daily ACS admissions and meteorological variables were collected from October 2016 to December 2021. A generalized linear model (GLM) with a Poisson distribution was employed to examine how short-term fluctuations in meteorological parameters influence ACS hospitalizations. Subgroup analyses were conducted to identify the populations most vulnerable to climate change. Results: Multiple regression analyses showed that short-term fluctuations in atmospheric pressure (≥10 mbar) and air temperature (≥5 °C) seven days prior increased the number of ACS hospitalizations by 58.7% (RR: 1.587; 95% CI: 1.501–1.679) and 55.2% (RR: 1.552; 95% CI: 1.465–1.644), respectively, notably impacting ST-segment elevation myocardial infarctions (STEMIs). The least pronounced association was observed between the daily count of ACS and the variation in relative air humidity (≥20%), resulting in an 18.4% (RR: 1.184; 95% CI: 1.091–1.286) increase in the risk of hospitalization. Subgroup analysis revealed an increased susceptibility among men and older adults to short-term variations in weather parameters. Conclusions: The findings indicate that short-term changes in weather conditions are associated with an increased risk of ACS hospitalizations, particularly STEMIs. Male and older adult patients exhibit heightened susceptibility to variations in climatic factors. Developing effective preventive strategies is imperative to alleviate the adverse consequences of these environmental risk factors

    Reduced Left Ventricular Twist Early after Acute ST-Segment Elevation Myocardial Infarction as a Predictor of Left Ventricular Adverse Remodelling

    No full text
    Background: The left ventricular (LV) remodelling process represents the main cause of heart failure after a ST-segment elevation myocardial infarction (STEMI). Speckle-tracking echocardiography (STE) can detect early deformation impairment, while also predicting LV remodelling during follow-up. The aim of this study was to investigate the STE parameters in predicting cardiac remodelling following a percutaneous coronary intervention (PCI) in STEMI patients. Methods: The study population consisted of 60 patients with acute STEMI and no history of prior myocardial infarction treated with PCI. The patients were assessed both by conventional transthoracic and ST echocardiography in the first 12 h after admission and 6 months after the acute phase. Adverse remodelling was defined as an increase in LVEDV and/or LVESV by 15%. Results: Adverse remodelling occurred in 26 patients (43.33%). By multivariate regression equation, the risk of adverse remodelling increases with age (by 1.1-fold), triglyceride level (by 1.009-fold), and midmyocardial radial strain (mid-RS) (1.06-fold). Increased initial twist decreases the chances of adverse remodelling (0.847-fold). The LV twist presented the largest area under the receiver operating characteristic (ROC) curve to predict adverse remodelling (AUROC = 0.648; 95% CI [0.506;0.789], p = 0.04). A twist value higher than 11° has a 76.9% specificity and a 72.7% positive predictive value for reverse remodelling at 6 months

    Genetic Characterization of Dilated Cardiomyopathy in Romanian Adult Patients

    No full text
    Dilated cardiomyopathy (DCM) represents a group of disorders affecting the structure and function of the heart muscle, leading to a high risk of heart failure and sudden cardiac death (SCD). DCM frequently involves an underlying genetic etiology. Genetic testing is valuable for risk stratification, treatment decisions, and family screening. Romanian population data on the genetic etiology of DCM are lacking. We aimed to investigate the genetic causes for DCM among Romanian adult patients at tertiary referral centers across the country. Clinical and genetic investigations were performed on adult patients presenting to tertiary hospitals in Romania. The genetic investigations used next-generation sequencing panels of disease-associated DCM genes. A total of 122 patients with DCM underwent genetic testing. The mean age at DCM diagnosis was 41.6 ± 12.4 years. The genetic investigations identified pathogenic or likely pathogenic variants in 50.8% of participants, while 25.4% had variants of unknown significance. Disease-causing variants in 15 genes were identified in people with DCM, with 31 previously unreported variants. Variants in TTN, LMNA, and DSP explained 75% of genetic causes for DCM. In total, 52.4% of patients had a family history of DCM/SCD. Left ventricular ejection fraction of <35% was observed in 41.9% of patients with disease-causing variants and 55% with negative or uncertain findings. Further genotype-phenotype correlations were explored in this study population. The substantial percentage (50.8%) of disease-causing variants identified in patients with DCM acknowledges the importance of genetic investigations. This study highlights the genetic landscape in genes associated with DCM in the Romanian population
    corecore