514 research outputs found

    Temperature Dependence of Interlayer Magnetoresistance in Anisotropic Layered Metals

    Full text link
    Studies of interlayer transport in layered metals have generally made use of zero temperature conductivity expressions to analyze angle-dependent magnetoresistance oscillations (AMRO). However, recent high temperature AMRO experiments have been performed in a regime where the inclusion of finite temperature effects may be required for a quantitative description of the resistivity. We calculate the interlayer conductivity in a layered metal with anisotropic Fermi surface properties allowing for finite temperature effects. We find that resistance maxima are modified by thermal effects much more strongly than resistance minima. We also use our expressions to calculate the interlayer resistivity appropriate to recent AMRO experiments in an overdoped cuprate which led to the conclusion that there is an anisotropic, linear in temperature contribution to the scattering rate and find that this conclusion is robust.Comment: 8 pages, 4 figure

    Hot electrons in low-dimensional phonon systems

    Full text link
    A simple bulk model of electron-phonon coupling in metals has been surprisingly successful in explaining experiments on metal films that actually involve surface- or other low-dimensional phonons. However, by an exact application of this standard model to a semi-infinite substrate with a free surface, making use of the actual vibrational modes of the substrate, we show that such agreement is fortuitous, and that the model actually predicts a low-temperature crossover from the familiar T^5 temperature dependence to a stronger T^6 log T scaling. Comparison with existing experiments suggests a widespread breakdown of the standard model of electron-phonon thermalization in metals

    The holographic spectral function in non-equilibrium states

    Full text link
    We develop holographic prescriptions for obtaining spectral functions in non-equilibrium states and space-time dependent non-equilibrium shifts in the energy and spin of quasi-particle like excitations. We reproduce strongly coupled versions of aspects of non-equilibrium dynamics of Fermi surfaces in Landau's Fermi-liquid theory. We find that the incoming wave boundary condition at the horizon does not suffice to obtain a well-defined perturbative expansion for non-equilibrium observables. Our prescription, based on analysis of regularity at the horizon, allows such a perturbative expansion to be achieved nevertheless and can be precisely formulated in a universal manner independent of the non-equilibrium state, provided the state thermalizes. We also find that the non-equilibrium spectral function furnishes information about the relaxation modes of the system. Along the way, we argue that in a typical non-supersymmetric theory with a gravity dual, there may exist a window of temperature and chemical potential at large N, in which a generic non-equilibrium state can be characterized by just a finitely few operators with low scaling dimensions, even far away from the hydrodynamic limit.Comment: revtex; 43 pages, 2 figures; typos corrected, accepted for publication in PR

    Solution of the Boltzmann equation in a random magnetic field

    Full text link
    A general framework for solving the Boltzmann equation for a 2-dimensional electron gas (2DEG) in random magnetic fields is presented, when the random fields are included in the driving force. The formalism is applied to some recent experiments, and a possible extension to composite fermions at ν=1/2\nu=1/2 is discussed.Comment: 15 pages, Revtex 3.0. The 5 postscript figures can be obtained from our WWW-server: http://roemer.fys.ku.dk/randbolt.htm , or on request from the author

    The Permafrost and Organic LayEr module for Forest Models (POLE-FM) 1.0

    Get PDF
    Climate change and increased fire are eroding the resilience of boreal forests. This is problematic because boreal vegetation and the cold soils underneath store approximately 30 % of all terrestrial carbon. Society urgently needs projections of where, when, and why boreal forests are likely to change. Permafrost (i.e., subsurface material that remains frozen for at least two consecutive years) and the thick soil-surface organic layers (SOLs) that insulate permafrost are important controls of boreal forest dynamics and carbon cycling. However, both are rarely included in process-based vegetation models used to simulate future ecosystem trajectories. To address this challenge, we developed a computationally efficient permafrost and SOL module that operates at fine spatial (1 ha) and temporal (daily) resolutions. The module mechanistically simulates daily changes in depth to permafrost, annual SOL accumulation, and their complex effects on boreal forest structure and functions. We coupled the module to an established forest landscape model, iLand, and benchmarked the model in interior Alaska at spatial scales of stands (1 ha) to landscapes (61,000 ha) and over temporal scales of days to centuries. The coupled model could generate intra- and inter-annual patterns of snow accumulation and active layer depth (portion of soil column that thaws throughout the year) consistent with independent observations in 17 instrumented forest stands. The model was also skilled at representing the distribution of near-surface permafrost presence in a topographically complex landscape. We simulated 34.6 % of forested area in the landscape as underlain by permafrost; a close match to the estimated 33.4 % from the benchmarking product. We further determined that the model could accurately simulate moss biomass, SOL accumulation, fire activity, tree-species composition, and stand structure at the landscape scale. Modular and flexible representations of key biophysical processes that underpin 21st-century ecological change are an essential next step in vegetation simulation to reduce uncertainty in future projections and to support innovative environmental decision making. We show that coupling a new permafrost and SOL module to an existing forest landscape model increases the model&rsquo;s utility for projecting forest futures at high latitudes. Process-based models that represent relevant dynamics will catalyze opportunities to address previously intractable questions about boreal forest resilience, biogeochemical cycling, and feedbacks to regional and global climate.&emsp;</p

    Thermalization of magnons in yttrium-iron garnet: nonequilibrium functional renormalization group approach

    Full text link
    Using a nonequilibrium functional renormalization group (FRG) approach we calculate the time evolution of the momentum distribution of a magnon gas in contact with a thermal phonon bath. As a cutoff for the FRG procedure we use a hybridization parameter {\Lambda} giving rise to an artificial damping of the phonons. Within our truncation of the FRG flow equations the time evolution of the magnon distribution is obtained from a rate equation involving cutoff-dependent nonequilibrium self-energies, which in turn satisfy FRG flow equations depending on cutoff-dependent transition rates. Our approach goes beyond the Born collision approximation and takes the feedback of the magnons on the phonons into account. We use our method to calculate the thermalization of a quasi two-dimensional magnon gas in the magnetic insulator yttrium-iron garnet after a highly excited initial state has been generated by an external microwave field. We obtain good agreement with recent experiments.Comment: 16 pages, 6 figures, final versio

    Counting statistics of interfering Bose-Einstein condensates

    Full text link
    A method is presented that is able to predict the probability of outcomes of snapshot measurements, such as the images of the instantaneous particle density distribution in a quantum many-body system. It is shown that a gauge-like transformation of the phase of the many-body wave function allows one to construct a probability generating functional, the Fourier transform of which with respect to the "gauge" field returns the joint probability distribution to detect any given number of particles at various locations. The method is applied to the problem of interference of two independent clouds of Bose-Einstein condensates, where the initially separated clouds with fixed boson numbers expand and the density profile image of the overlapping clouds is registered. In the limit of large particle numbers, the probability to observe a particular image of the density profile is shown to be given by a sum of partial probability distributions, each of which corresponds to a noisy image of interference of two matter waves with definite phase difference. In agreement with earlier theoretical arguments, interference fringes are, therefore, expected in any single shot measurement, the fringe pattern randomly varying from run to run. These results conform to the physical picture where the Bose-Einstein clouds are in spontaneously symmetry broken states, the hidden phases of which are revealed by the density profile measurement via the position of the interference fringes.Comment: Some changes in presentation, as published, 6 pages, LaTe

    Evaluation of a 3-D rockfall module within a forest patch model

    Get PDF
    Many slopes in the Alps are prone to rockfall and forests play a vital role in protecting objects such as (rail) roads and infrastructure against rockfall. Decision support tools are required to assess rockfall processes and to quantify the rockfall protection effect of forest stands. This paper presents results of an iterative sequence of tests and improvements of a coupled rockfall and forest dynamics model with focus on the rockfall module. As evaluation data a real-size rockfall experiment in the French Alps and two 2-D rockfall trajectories from Austria and Switzerland were used. Modification of the rebound algorithm and the inclusion of an algorithm accounting for the sudden halt of falling rocks due to surface roughness greatly improved the correspondence between simulated and observed key rockfall variables like run-out distances, rebound heights and jump lengths for the real-size rockfall experiment. Moreover, the observed jump lengths and run-out distances of the 2-D trajectories were well within the stochastic range of variation yielded by the simulations. Based on evaluation results it is concluded that the rockfall model can be employed to assess the protective effect of forest vegetation

    GW approximations and vertex corrections on the Keldysh time-loop contour: application for model systems at equilibrium

    Get PDF
    We provide the formal extension of Hedin's GW equations for single-particle Green's functions with electron-electron interaction onto the Keldysh time-loop contour. We show an application of our formalism to the plasmon model of a core electron within the plasmon-pole approximation. We study in detail the diagrammatic perturbation expansion of the core-electron/plasmon coupling on the spectral functions of the so-called S-model which provides an exact solution, concentrating especially on the effects of self-consistency and vertex corrections on the GW self-energy. For the S-model, self-consistency is essential for GW-like calculations to obtain the full spectral information. The second- order exchange diagram (i.e. a vertex correction) is crucial to obtain a better spectral description of the plasmon peak and side-band peaks in comparison to GW-like calculations. However, the vertex corrections are well reproduced within a non-self-consistent calculation. We also consider conventional equilibrium GW calculations for the pure jellium model. We find that with no second-order vertex correction, we cannot obtain the full set of plasmon side-band peaks. Finally, we address the issues of formal connection for the Dyson equations of the time-ordered Green's function and the Keldysh Green's functions at equilibrium in the cases of zero and finite temperature.Comment: Published in PRB November 22 201
    • …
    corecore