10 research outputs found
Evaluation of Bacteriological Quality of Ready-to-eat Chicken Products by Total Viable Count Method
The present investigation describes the total viable count of ready-to-eat chicken products (chicken patties and chicken rolls) in Srinagar city during two seasons viz. autumn and winter. A total of 120 ready-to-eat chicken products comprising of 60 chicken patties and 60 chicken rolls were tested. The mean bacterial count of 60 chicken patties and 60 chicken rolls was 5.1281 and 4.9395 log10 cfu/g. Bacillus cereus strains were isolated from 25 of chicken patties and 22 of the chicken rolls resulting in prevalence of 41.66% and 36.67%, respectively
Label-aware distance mitigates temporal and spatial variability for clustering and visualization of single-cell gene expression data
Abstract Clustering and visualization are essential parts of single-cell gene expression data analysis. The Euclidean distance used in most distance-based methods is not optimal. The batch effect, i.e., the variability among samples gathered from different times, tissues, and patients, introduces large between-group distance and obscures the true identities of cells. To solve this problem, we introduce Label-Aware Distance (Lad), a metric using temporal/spatial locality of the batch effect to control for such factors. We validate Lad on simulated data as well as apply it to a mouse retina development dataset and a lung dataset. We also found the utility of our approach in understanding the progression of the Coronavirus Disease 2019 (COVID-19). Lad provides better cell embedding than state-of-the-art batch correction methods on longitudinal datasets. It can be used in distance-based clustering and visualization methods to combine the power of multiple samples to help make biological findings
Performance Improvement of Axial Flux Permanent Magnet Machine with Phase Group Concentrated Coil Winding
This paper suggests a method to improve the performances of the Dual Stator Axial Flux Spoke-type Permanent Magnet (DSAFSPM) machines with phase group concentrated coil (PGCC) windings, by incorporating continuous and discrete step-skewing along with a special winding connection. The purpose of the study is to mitigate the cogging torque and torque ripples while increasing the output torque so it ameliorates the machine performance at minimum cost for various applications such as wind power plants and electric vehicles (EVs). Cogging torque produces noise and vibrations which degrade the machine’s performance and reduces its life span. The proposed winding sequence enhances the output torque by improving its distribution factor along with the use of continuous skew and step-skew magnets. This research work improved the cogging torque and torque ripples with the help of skew techniques while output torque is increased by the proposed winding sequence. Further harmonics and ripples are also mitigated by the proposed winding sequence. The overall machine volume is kept constant along with the magnet size and the design parameters for fair performance analysis. Comparative analysis of these machines is performed using three-dimensional (3-D) time-stepped finite element analysis (FEA). Proposed model I and proposed model II reduce the harmonics by 42% and 23%, respectively. By using continuous skew and discrete step-skew magnets, cogging torque is reduced up to 81.5% and 75%, respectively. This reduction in cogging torque reduces the noise and vibration in machines which assists the machines to perform a smooth operation. The reduction in output torque ripples in proposed model I is 60.8% while that of proposed model II is 59.3%
Biology, ecology and management of Raphanus raphanistrum L.: a noxious agricultural and environmental weed
Weeds are a major constraint to crop production and a barrier to human efforts to meet the ever-rising global demand for food, fibre and fuel. Managing weeds solely with herbicides is unsustainable due to the rapid evolution of herbicide-resistant weeds. Precise knowledge of the ecology and biology of weeds is of utmost importance to determine the most appropriate nonchemical management techniques. Raphanus raphanistrum L. is an extremely invasive and noxious weed due to its prolific seed production, allelopathic potential, multiple herbicide resistance and biological potential. R. raphanistrum causes high crop yield losses and thus has become one of the most troublesome agricultural and environmental weeds. R. raphanistrum could exchange pollen with herbicide-tolerant canola and could become an environmental threat. This weed has evolved resistance to many herbicides, and relying exclusively on herbicide-based management could lead to severe crop loss and uneconomical cropping. Although reviews are available on the ecology and biology of R. raphanistrum, significant changes in tillage, weed management and agronomic practices have been occurring worldwide. Therefore, it is timely to review the status of noxious weeds in different agro-ecological zones and management scenarios. This review focuses on the response of R. raphanistrum to different cultural, mechanical, biological, chemical and integrated management strategies practiced in various agro-ecosystems, and its biological potential to thrive under different weed management tactics. In addition, this review facilitates a better understanding of R. raphanistrum and describes how weed management outcomes could be improved through exploiting the biology and ecology of the weed