1 research outputs found
Increase of the Energy Necessary to Probe Ultraviolet Theories Due to the Presence of a Strong Magnetic Field
We use the gauge gravity correspondence to study the renormalization group
flow of a double trace fermionic operator in a quark-gluon plasma subject to
the influence of a strong magnetic field and compare it with the results for
the case at zero temperature and no magnetic field, where the flow between two
fixed points is observed. Our results show that the energy necessary to access
the physics of the ultraviolet theory increases with the intensity of the
magnetic field under which the processes happen. We provide arguments to
support that this increase is scheme independent, and to exhibit further
evidence we do a very simple calculation showing that the dimensional reduction
expected in the gauge theory in this scenario is effective up to an energy
scale that grows with the strength of such a background field. We also show
that independently of the renormalization scheme, the coupling of the double
trace operators in the ultraviolet fixed point increases with the intensity of
the background field. These effects combined can change both, the processes
that are expected to be involved in a collision experiment at a given energy
and the azimuthal anisotropy of the measurements resulting of them.Comment: 23 pages, 10 figures. Added section about renormalization scheme
independenc