298 research outputs found

    BAC array CGH in patients with Velocardiofacial syndrome-like features reveals genomic aberrations on chromosome region 1q21.1

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Microdeletion of the chromosome 22q11.2 region is the most common genetic aberration among patients with velocardiofacial syndrome (VCFS) but a subset of subjects do not show alterations of this chromosome region.</p> <p>Methods</p> <p>We analyzed 18 patients with VCFS-like features by comparative genomic hybridisation (aCGH) array and performed a face-to-face slide hybridization with two different arrays: a whole genome and a chromosome 22-specific BAC array. Putative rearrangements were confirmed by FISH and MLPA assays.</p> <p>Results</p> <p>One patient carried a combination of rearrangements on 1q21.1, consisting in a microduplication of 212 kb and a close microdeletion of 1.15 Mb, previously reported in patients with variable phenotypes, including mental retardation, congenital heart defects (CHD) and schizophrenia. While 326 control samples were negative for both 1q21.1 rearrangements, one of 73 patients carried the same 212-kb microduplication, reciprocal to TAR microdeletion syndrome. Also, we detected four copy number variants (CNVs) inherited from one parent (a 744-kb duplication on 10q11.22; a 160 kb duplication and deletion on 22q11.21 in two cases; and a gain of 140 kb on 22q13.2), not present in control subjects, raising the potential role of these CNVs in the VCFS-like phenotype.</p> <p>Conclusions</p> <p>Our results confirmed aCGH as a successful strategy in order to characterize additional submicroscopic aberrations in patients with VCF-like features that fail to show alterations in 22q11.2 region. We report a 212-kb microduplication on 1q21.1, detected in two patients, which may contribute to CHD.</p

    Search for the Exclusive W Boson Hadronic Decays W±→π±γ , W±→K±γ and W±→ρ±γ with the ATLAS Detector

    Get PDF

    Studies of new Higgs boson interactions through nonresonant HH production in the b¯bγγ fnal state in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    A search for nonresonant Higgs boson pair production in the b ¯bγγ fnal state is performed using 140 fb−1 of proton-proton collisions at a centre-of-mass energy of 13 TeV recorded by the ATLAS detector at the CERN Large Hadron Collider. This analysis supersedes and expands upon the previous nonresonant ATLAS results in this fnal state based on the same data sample. The analysis strategy is optimised to probe anomalous values not only of the Higgs (H) boson self-coupling modifer κλ but also of the quartic HHV V (V = W, Z) coupling modifer κ2V . No signifcant excess above the expected background from Standard Model processes is observed. An observed upper limit µHH &lt; 4.0 is set at 95% confdence level on the Higgs boson pair production cross-section normalised to its Standard Model prediction. The 95% confdence intervals for the coupling modifers are −1.4 &lt; κλ &lt; 6.9 and −0.5 &lt; κ2V &lt; 2.7, assuming all other Higgs boson couplings except the one under study are fxed to the Standard Model predictions. The results are interpreted in the Standard Model efective feld theory and Higgs efective feld theory frameworks in terms of constraints on the couplings of anomalous Higgs boson (self-)interactions

    Search for light long-lived neutral particles from Higgs boson decays via vector-boson-fusion production from pp collisions at s=13\sqrt{s}=13 TeV with the ATLAS detector

    Get PDF

    Statistical Combination of ATLAS Run 2 Searches for Charginos and Neutralinos at the LHC

    Get PDF
    Statistical combinations of searches for charginos and neutralinos using various decay channels are performed using 139 fb^{-1} of pp collision data at sqrt[s]=13 TeV with the ATLAS detector at the Large Hadron Collider. Searches targeting pure-wino chargino pair production, pure-wino chargino-neutralino production, or Higgsino production decaying via standard model W, Z, or h bosons are combined to extend the mass reach to the produced supersymmetric particles by 30-100&nbsp;GeV. The depth of the sensitivity of the original searches is also improved by the combinations, lowering the 95% C.L. cross-section upper limits by 15%-40%

    Measurement of ZZ production cross-sections in the four-lepton final state in pp collisions at √s = 13.6 TeV with the ATLAS experiment

    Get PDF

    Differential cross-sections for events with missing transverse momentum and jets measured with the ATLAS detector in 13 TeV proton-proton collisions

    Get PDF

    A search for top-squark pair production, in final states containing a top quark, a charm quark and missing transverse momentum, using the 139 fb−1 of pp collision data collected by the ATLAS detector

    Get PDF

    Electron and photon energy calibration with the ATLAS detector using LHC Run 2 data

    Get PDF
    This paper presents the electron and photon energy calibration obtained with the ATLAS detector using 140 fb−1 of LHC proton-proton collision data recorded at root(s) = 13 TeV between 2015 and 2018. Methods for the measurement of electron and photon energies are outlined, along with the current knowledge of the passive material in front of the ATLAS electromagnetic calorimeter. The energy calibration steps are discussed in detail, with emphasis on the improvements introduced in this paper. The absolute energy scale is set using a large sample of Z-boson decays into electron-positron pairs, and its residual dependence on the electron energy is used for the first time to further constrain systematic uncertainties. The achieved calibration uncertainties are typically 0.05% for electrons from resonant Z-boson decays, 0.4% at ET tilde 10 GeV, and 0.3% at ET tilde 1 TeV; for photons at ET tilde 60 GeV, they are 0.2% on average. This is more than twice as precise as the previous calibration. The new energy calibration is validated using J/psi -&gt; ee and radiative Z-boson decays

    Search for non-resonant Higgs boson pair production in the 2b+2l+ETmiss final state in pp collisions at s = 13 TeV with the ATLAS detector

    Get PDF
    A search for non-resonant Higgs boson pair (HH) production is presented, in which one of the Higgs bosons decays to a b-quark pair (bb ̄) and the other decays to WW*, ZZ*, or τ+τ−, with in each case a final state with l+l−+ neutrinos (l = e, μ). The analysis targets separately the gluon-gluon fusion and vector boson fusion production modes. Data recorded by the ATLAS detector in proton-proton collisions at a centre-of-mass energy of 13 TeV at the Large Hadron Collider, corresponding to an integrated luminosity of 140 fb−1, are used in this analysis. Events are selected to have exactly two b-tagged jets and two leptons with opposite electric charge and missing transverse momentum in the final state. These events are classified using multivariate analysis algorithms to separate the HH events from other Standard Model processes. No evidence of the signal is found. The observed (expected) upper limit on the cross-section for non-resonant Higgs boson pair production is determined to be 9.7 (16.2) times the Standard Model prediction at 95% confidence level. The Higgs boson self-interaction coupling parameter κλ and the quadrilinear coupling parameter κ2V are each separately constrained by this analysis to be within the ranges [−6.2, 13.3] and [−0.17, 2.4], respectively, at 95% confidence level, when all other parameters are fixed
    corecore