37,246 research outputs found
Coulomb effects in artificial molecules
We study the capacitance spectra of artificial molecules consisting of two
and three coupled quantum dots from an extended Hubbard Hamiltonian model that
takes into account quantum confinement, intra- and inter-dot Coulomb
interaction and tunneling coupling between all single particle states in
nearest neighbor dots. We find that, for weak coupling, the interdot Coulomb
interaction dominates the formation of a collective molecular state. We also
calculate the effects of correlations on the tunneling probability through the
evaluation of the spectral weights, and corroborate the importance of selection
rules for understanding experimental conductance spectra.Comment: dvi file and 4 postscript figures, all included in uu file. To appear
in Superlatt. and Microstr. Also available at
http://www.phy.ohiou.edu/~ulloa/ulloa.htm
Dyes removal from water using low cost absorbents
In this study, the removal capacity of low cost adsorbents during the adsorption of Methylene Blue (MB) and Congo Red (CR) at different concentrations (50 and 100mg•L-1) was evaluated. These adsorbents were produced from wood wastes (cedar and teak) by chemical activation (ZnCl2). Both studied materials, Activated Cedar (AC) and activated teak (AT) showed a good fit of their experimental data to the pseudo second order kinetic model and Langmuir isotherms. The maximum adsorption capacities for AC were 2000.0 and 444.4mg•g-1 for MB and CR, respectively, while for AT, maximum adsorption capacities of 1052.6 and 86.4mg•g-1 were found for MB and CR, respectively. © Published under licence by IOP Publishing Ltd
Atypical Thermonuclear Supernovae from Tidally Crushed White Dwarfs
Suggestive evidence has accumulated that intermediate mass black holes (IMBH)
exist in some globular clusters. As stars diffuse in the cluster, some will
inevitable wander sufficiently close to the hole that they suffer tidal
disruption. An attractive feature of the IMBH hypothesis is its potential to
disrupt not only solar-type stars but also compact white dwarf stars. Attention
is given to the fate of white dwarfs that approach the hole close enough to be
disrupted and compressed to such extent that explosive nuclear burning may be
triggered. Precise modeling of the dynamics of the encounter coupled with a
nuclear network allow for a realistic determination of the explosive energy
release, and it is argued that ignition is a natural outcome for white dwarfs
of all varieties passing well within the tidal radius. Although event rates are
estimated to be significantly less than the rate of normal Type Ia supernovae,
such encounters may be frequent enough in globular clusters harboring an IMBH
to warrant a search for this new class of supernova.Comment: 13 pages, 4 figures, ApJ, accepte
Top quark forward-backward asymmetry from the model
The forward-backward asymmetry in top quark pair production,
measured at the Tevatron, is probably related to the contribution of new
particles. The Tevatron result is more than a deviation from the
standard model prediction and motivates the application of alternative models
introducing new states.
However, as the standard model predictions for the total cross section
and invariant mass distribution for this process are in
good agreement with experiments, any alternative model must reproduce these
predictions. These models can be placed into two categories: One introduces the
s-channel exchange of new vector bosons with chiral couplings to the light
quarks and to the top quark and another relies on the t-channel exchange of
particles with large flavor-violating couplings in the quark sector. In this
work we employ a model which introduces both s- and t-channel nonstandard
contributions for the top quark pair production in proton antiproton
collisions. We use the minimal version of the model (3-3-1 model) that predicts the existence of a new neutral gauge
boson, called . This gauge boson has both flavor-changing couplings
to up and top quarks and chiral coupling to the light quarks and to the top
quark. This very peculiar model coupling can correct the for top quark
pair production for two ranges of mass while leading to cross
section and invariant mass distribution quite similar to the standard model
ones. This result reinforces the role of the 3-3-1 model for any new physics
effect.Comment: 12 pages, 4 figures, 2 table
- …
