17,603 research outputs found

    GRB990123: Evidence that the Gamma Rays Come from a Central Engine

    Get PDF
    GRB990123 was a long complex gamma-ray burst with an optical transient that started early within the gamma-ray phase. The peak and power law decay of the early optical emission strongly indicates the presence of a decelerating relativistic shell during that phase. Prior to this burst, it was not known if the shell decelerated during the burst, so an external shock origin for the gamma rays was still possible. If the gamma-rays are produced in the external shock, then the pulse widths should reflect the observed deceleration of the shell and increase by about 2.3. We analyze the fine time structure observed in the gamma-ray data from BATSE and determine that the width of the peaks do not increase as expected for a decelerating shell; the later pulses are, at most, a factor of 1.15 longer than the earlier pulses. We also analyze the variability to determine what fraction of the shell's surface could be involved in the production of the gamma rays, the so-called surface filling factor. For GRB990123 we find a filling factor of 0.008. The lack of pulse width evolution eliminates the only remaining kinematically acceptable external shock explanation for the gamma-ray phase and, thus, the gamma rays must originate at a central engine.Comment: 14 pages, 3 embedded figues, Latex, Submitted to ApJ

    Magnetic Structure and Spin Waves in the Kagom\'{e} Jarosite compound KFe3(SO4)2(OH)6{\bf KFe_3(SO_4)_2(OH)_6}

    Get PDF
    We present a detailed study of the magnetic structure and spin waves in the Fe jarosite compound KFe3(SO4)2(OH)6{\rm KFe_3(SO_4)_2(OH)_6} for the most general Hamiltonian involving one- and two-spin interactions which are allowed by symmetry. We compare the calculated spin-wave spectrum with the recent neutron scattering data of Matan {\it et al.} for various model Hamiltonians which include, in addition to isotropic Heisenberg exchange interactions between nearest (J1J_1) and next-nearest (J2J_2) neighbors, single ion anisotropy and Dzyaloshinskii-Moriya (DM) interactions. We concluded that DM interactions are the dominant anisotropic interaction, which not only fits all the splittings in the spin-wave spectrum but also reproduces the small canting of the spins out of the Kagom\'e plane. A brief discussion of how representation theory restricts the allowed magnetic structure is also given.Comment: 23 pages, 17 figures, submitted to Phys. Rev. B (March 2006

    Mass enhancement, correlations, and strong coupling superconductivity in the beta-pyrochlore KOs2O6

    Full text link
    To assess electron correlation and electron-phonon coupling in the recently discovered beta-pyrochlores KOs2O6 and RbOs2O6, we have performed specific heat measurements in magnetic fields up to 14 T. We present data from high quality single crystalline KOs2O6, showing that KOs2O6 is a strong coupling superconductor with a coupling parameter lambda_ep \approx 1.0 to 1.6 (RbOs2O6: lambda_ep \approx 1). The estimated Sommerfeld coefficient of KOs2O6, gamma=76 to 110 mJ/(mol K^2), is twice that of RbOs2O6 [gamma=44 mJ/(mol K^2)]. Using strong-coupling corrections, we extract useful thermodynamic parameters of KOs2O6. Quantifying lambda_ep allows us to determine the mass enhancement over the calculated band electronic density of states. A significant contribution in addition to the electron-phonon term of lambda_c=1.7 to 4.3 is deduced. In an effort to understand the origin of the enhancement mechanism, we also investigate an unusual energetically low-lying phonon. There are three phonon modes per RbOs2O6, suggestive of the phonon source being the rattling motion of the alkali ion. This dynamic instability of the alkali ions causes large scattering of the charge carriers which shows up in an unusual temperature dependence of the electrical resistivity.Comment: Accepted for publication in PR

    A complete devil's staircase in the Falicov-Kimball model

    Get PDF
    We consider the neutral, one-dimensional Falicov-Kimball model at zero temperature in the limit of a large electron--ion attractive potential, U. By calculating the general n-ion interaction terms to leading order in 1/U we argue that the ground-state of the model exhibits the behavior of a complete devil's staircase.Comment: 6 pages, RevTeX, 3 Postscript figure

    Cooler and bigger than thought? Planetary host stellar parameters from the InfraRed Flux Method

    Full text link
    Effective temperatures and radii for 92 planet-hosting stars as determined from the InfraRed Flux Method (IRFM) are presented and compared with those given by other authors using different approaches. The IRFM temperatures we have derived are systematically lower than those determined from the spectroscopic condition of excitation equilibrium, the mean difference being as large as 110 K. They are, however, consistent with previous IRFM studies and with the colors derived from Kurucz and MARCS model atmospheres. Comparison with direct measurements of stellar diameters for 7 dwarf stars, which approximately cover the range of temperatures of the planet-hosting stars, suggest that the IRFM radii and temperatures are reliable in an absolute scale. A better understanding of the fundamental properties of the stars with planets will be achieved once this discrepancy between the IRFM and the spectroscopic temperature scales is resolved.Comment: 15 pages, 4 figures. Accepted for publication in Ap

    Magnetic susceptibility of diluted pyrochlore and SCGO antiferromagnets

    Full text link
    We investigate the magnetic susceptibility of the classical Heisenberg antiferromagnet with nearest-neighbour interactions on the geometrically frustrated pyrochlore lattice, for a pure system and in the presence of dilution with nonmagnetic ions. Using the fact that the correlation length in this system for small dilution is always short, we obtain an approximate but accurate expression for the magnetic susceptibility at all temperatures. We extend this theory to the compound SrCr_{9-9x}Ga_{3+9x}O_{19} (SCGO) and provide an explanation of the phenomenological model recently proposed by Schiffer and Daruka [Phys. Rev. B56, 13712 (1997)].Comment: 4 pages, Latex, 4 postscript figures automatically include

    Absence of ferromagnetism in Co and Mn substituted polycrystalline ZnO

    Full text link
    We discuss the properties of semiconducting bulk ZnO when substituted with the magnetic transition metal ions Mn and Co, with substituent fraction ranging from xx = 0.02 to xx = 0.15. The magnetic properties were measured as a function of magnetic field and temperature and we find no evidence for magnetic ordering in these systems down to TT = 2 K. The magnetization can be fit by the sum of a Curie-Weiss term with a Weiss temperature of Θ\Theta\gg100 K and a Curie term. We attribute this behavior to contributions from both \textit{t}M ions with \textit{t}M nearest neighbors and from isolated spins. This particular functional form for the susceptibility is used to explain why no ordering is observed in \textit{t}M substituted ZnO samples despite the large values of the Weiss temperature. We also discuss in detail the methods we used to minimize any impurity contributions to the magnetic signal.Comment: 6 pages, 4 figures (revised
    corecore