128 research outputs found
Single neutral pion production by charged-current interactions on hydrocarbon at 3.6 GeV
Single neutral pion production via muon antineutrino charged-current
interactions in plastic scintillator (CH) is studied using the \minerva
detector exposed to the NuMI low-energy, wideband antineutrino beam at
Fermilab. Measurement of this process constrains models of neutral pion
production in nuclei, which is important because the neutral-current analog is
a background for appearance oscillation experiments. The
differential cross sections for momentum and production angle, for
events with a single observed and no charged pions, are presented and
compared to model predictions. These results comprise the first measurement of
the kinematics for this process.Comment: 6 pages, 5 figures, submitted to Physics Letters
First evidence of coherent meson production in neutrino-nucleus scattering
Neutrino-induced charged-current coherent kaon production,
, is a rare, inelastic electroweak process
that brings a on shell and leaves the target nucleus intact in its ground
state. This process is significantly lower in rate than neutrino-induced
charged-current coherent pion production, because of Cabibbo suppression and a
kinematic suppression due to the larger kaon mass. We search for such events in
the scintillator tracker of MINERvA by observing the final state ,
and no other detector activity, and by using the kinematics of the final state
particles to reconstruct the small momentum transfer to the nucleus, which is a
model-independent characteristic of coherent scattering. We find the first
experimental evidence for the process at significance.Comment: added ancillary file with information about the six kaon candidate
MINERvA neutrino detector response measured with test beam data
The MINERvA collaboration operated a scaled-down replica of the solid
scintillator tracking and sampling calorimeter regions of the MINERvA detector
in a hadron test beam at the Fermilab Test Beam Facility. This article reports
measurements with samples of protons, pions, and electrons from 0.35 to 2.0
GeV/c momentum. The calorimetric response to protons, pions, and electrons are
obtained from these data. A measurement of the parameter in Birks' law and an
estimate of the tracking efficiency are extracted from the proton sample.
Overall the data are well described by a Geant4-based Monte Carlo simulation of
the detector and particle interactions with agreements better than 4%, though
some features of the data are not precisely modeled. These measurements are
used to tune the MINERvA detector simulation and evaluate systematic
uncertainties in support of the MINERvA neutrino cross section measurement
program.Comment: as accepted by NIM
Measurement of Total and Differential Cross Sections of Neutrino and Antineutrino Coherent Production on Carbon
Neutrino induced coherent charged pion production on nuclei,
, is a rare inelastic interaction in
which the four-momentum squared transfered to the nucleus is nearly zero,
leaving it intact. We identify such events in the scintillator of MINERvA by
reconstructing |t| from the final state pion and muon momenta and by removing
events with evidence of energetic nuclear recoil or production of other final
state particles. We measure the total neutrino and antineutrino cross sections
as a function of neutrino energy between 2 and 20 GeV and measure flux
integrated differential cross sections as a function of , and
. The dependence and equality of the neutrino and
anti-neutrino cross-sections at finite provide a confirmation of Adler's
PCAC hypothesis
Measurement of Partonic Nuclear Effects in Deep-Inelastic Neutrino Scattering using MINERvA
The MINERvA collaboration reports a novel study of neutrino-nucleus
charged-current deep inelastic scattering (DIS) using the same neutrino beam
incident on targets of polystyrene, graphite, iron, and lead. Results are
presented as ratios of C, Fe, and Pb to CH. The ratios of total DIS cross
sections as a function of neutrino energy and flux-integrated differential
cross sections as a function of the Bjorken scaling variable x are presented in
the neutrino-energy range of 5 - 50 GeV. Good agreement is found between the
data and predicted ratios, based on charged-lepton nucleus scattering, at
medium x and low neutrino energies. However, the data rate appears depleted in
the vicinity of the nuclear shadowing region, x < 0.1. This apparent deficit,
reflected in the DIS cross-section ratio at high neutrino energy , is
consistent with previous MINERvA observations and with the predicted onset of
nuclear shadowing with the the axial-vector current in neutrino scattering
The Transcriptomes of Two Heritable Cell Types Illuminate the Circuit Governing Their Differentiation
The differentiation of cells into distinct cell types, each of which is heritable for many generations, underlies many biological phenomena. White and opaque cells of the fungal pathogen Candida albicans are two such heritable cell types, each thought to be adapted to unique niches within their human host. To systematically investigate their differences, we performed strand-specific, massively-parallel sequencing of RNA from C. albicans white and opaque cells. With these data we first annotated the C. albicans transcriptome, finding hundreds of novel differentially-expressed transcripts. Using the new annotation, we compared differences in transcript abundance between the two cell types with the genomic regions bound by a master regulator of the white-opaque switch (Wor1). We found that the revised transcriptional landscape considerably alters our understanding of the circuit governing differentiation. In particular, we can now resolve the poor concordance between binding of a master regulator and the differential expression of adjacent genes, a discrepancy observed in several other studies of cell differentiation. More than one third of the Wor1-bound differentially-expressed transcripts were previously unannotated, which explains the formerly puzzling presence of Wor1 at these positions along the genome. Many of these newly identified Wor1-regulated genes are non-coding and transcribed antisense to coding transcripts. We also find that 5′ and 3′ UTRs of mRNAs in the circuit are unusually long and that 5′ UTRs often differ in length between cell-types, suggesting UTRs encode important regulatory information and that use of alternative promoters is widespread. Further analysis revealed that the revised Wor1 circuit bears several striking similarities to the Oct4 circuit that specifies the pluripotency of mammalian embryonic stem cells. Additional characteristics shared with the Oct4 circuit suggest a set of general hallmarks characteristic of heritable differentiation states in eukaryotes
Barriers of mental health treatment utilization among first-year college students: First cross-national results from the WHO World Mental Health International College Student Initiative.
BACKGROUND: Although mental disorders and suicidal thoughts-behaviors (suicidal thoughts and behaviors) are common among university students, the majority of students with these problems remain untreated. It is unclear what the barriers are to these students seeking treatment. AIMS: The aim of this study is to examine the barriers to future help-seeking and the associations of clinical characteristics with these barriers in a cross-national sample of first-year college students. METHOD: As part of the World Mental Health International College Student (WMH-ICS) initiative, web-based self-report surveys were obtained from 13,984 first-year students in eight countries across the world. Clinical characteristics examined included screens for common mental disorders and reports about suicidal thoughts and behaviors. Multivariate regression models adjusted for socio-demographic, college-, and treatment-related variables were used to examine correlates of help-seeking intention and barriers to seeking treatment. RESULTS: Only 24.6% of students reported that they would definitely seek treatment if they had a future emotional problem. The most commonly reported reasons not to seek treatment among students who failed to report that they would definitely seek help were the preference to handle the problem alone (56.4%) and wanting to talk with friends or relatives instead (48.0%). Preference to handle the problem alone and feeling too embarrassed were also associated with significantly reduced odds of having at least some intention to seek help among students who failed to report that they would definitely seek help. Having 12-month major depression, alcohol use disorder, and suicidal thoughts and behaviors were also associated with significantly reduced reported odds of the latter outcome. CONCLUSIONS: The majority of first-year college students in the WMH-ICS surveys report that they would be hesitant to seek help in case of future emotional problems. Attitudinal barriers and not structural barriers were found to be the most important reported reasons for this hesitation. Experimental research is needed to determine whether intention to seek help and, more importantly, actual help-seeking behavior could be increased with the extent to which intervention strategies need to be tailored to particular student characteristics. Given that the preference to handle problems alone and stigma and appear to be critical, there could be value in determining if internet-based psychological treatments, which can be accessed privately and are often build as self-help approaches, would be more acceptable than other types of treatments to student who report hesitation about seeking treatment.status: publishe
Using jasmonates and salicylates to reduce losses within the fruit supply chain
The fresh produce industry is constantly growing, due to increasing consumer demand. The shelf-life of some fruit, however, is relatively short, limited by microbial contamination or visual, textural and nutritional quality loss. Thus, techniques for reducing undesired microbial contamination, spoilage and decay, as well as maintaining product’s visual, textural and nutritional quality are in high demand at all steps within the supply chain. The postharvest use of signalling molecules, i.e. jasmonates and salicylates seems to have unexplored potential. The focus of this review is on the effects of treatment with jasmonates and salicylates on the fresh produce quality, defined by decay incidence and severity, chilling injury, maintenance of texture, visual quality, taste and aroma, and nutritional content. Postharvest treatments with jasmonates and salicylates have the ability to reduce decay by increasing fruit resistance to diseases and reducing chilling injury in numerous products. These treatments also possess the ability to improve other quality characteristics, i.e. appearance, texture maintenance and nutritional content. Furthermore, they can easily be combined with other treatments, e.g. heat treatment, ultrasound treatment. A good understanding of all the benefits and limitations related to the postharvest use of jasmonates and salicylates is needed, and relevant information has been reviewed in this paper
- …