21,138 research outputs found
Ising pyrochlore magnets: Low temperature properties, ice rules and beyond
Pyrochlore magnets are candidates for spin-ice behavior. We present
theoretical simulations of relevance for the pyrochlore family R2Ti2O7 (R= rare
earth) supported by magnetothermal measurements on selected systems. By
considering long ranged dipole-dipole as well as short-ranged superexchange
interactions we get three distinct behaviours: (i) an ordered doubly degenerate
state, (ii) a highly disordered state with a broad transition to paramagnetism,
(iii) a partially ordered state with a sharp transition to paramagnetism. Thus
these competing interactions can induce behaviour very different from
conventional ``spin ice''. Closely corresponding behaviour is seen in the real
compounds---in particular Ho2Ti2O7 corresponds to case (iii) which has not been
discussed before, rather than (ii) as suggested earlier.Comment: 5 pages revtex, 4 figures; some revisions, additional data,
additional co-authors and a changed title. Basic ideas of paper remain the
same but those who downloaded the original version are requested to get this
more complete versio
Magnetic susceptibility of diluted pyrochlore and SCGO antiferromagnets
We investigate the magnetic susceptibility of the classical Heisenberg
antiferromagnet with nearest-neighbour interactions on the geometrically
frustrated pyrochlore lattice, for a pure system and in the presence of
dilution with nonmagnetic ions. Using the fact that the correlation length in
this system for small dilution is always short, we obtain an approximate but
accurate expression for the magnetic susceptibility at all temperatures. We
extend this theory to the compound SrCr_{9-9x}Ga_{3+9x}O_{19} (SCGO) and
provide an explanation of the phenomenological model recently proposed by
Schiffer and Daruka [Phys. Rev. B56, 13712 (1997)].Comment: 4 pages, Latex, 4 postscript figures automatically include
Magnetocaloric Study of Spin Relaxation in `Frozen' Dipolar Spin Ice Dy2Ti2O7
The magnetocaloric effect of polycrystalline samples of pure and Y-doped
dipolar spin ice Dy2Ti2O7 was investigated at temperatures from nominally 0.3 K
to 6 K and in magnetic fields of up to 2 T. As well as being of intrinsic
interest, it is proposed that the magnetocaloric effect may be used as an
appropriate tool for the qualitative study of slow relaxation processes in the
spin ice regime. In the high temperature regime the temperature change on
adiabatic demagnetization was found to be consistent with previously published
entropy versus temperature curves. At low temperatures (T < 0.4 K) cooling by
adiabatic demagnetization was followed by an irreversible rise in temperature
that persisted after the removal of the applied field. The relaxation time
derived from this temperature rise was found to increase rapidly down to 0.3 K.
The data near to 0.3 K indicated a transition into a metastable state with much
slower relaxation, supporting recent neutron scattering results. In addition,
magnetic dilution of 50 % concentration was found to significantly prolong the
dynamical response in the milikelvin temperature range, in contrast with
results reported for higher temperatures at which the spin correlations are
suppressed. These observations are discussed in terms of defects and loop
correlations in the spin ice state.Comment: 9 figures, submitted to Phys. Rev.
The mid-infrared colors of the interstellar medium and extended sources at the Galactic center
A mid-infrared (3.6–8 μm) survey of the Galactic center has been carried out with the IRAC instrument on the Spitzer Space Telescope. This survey covers the central 2º x 1.4º (~280 x 200 pc) of the Galaxy. At 3.6 and 4.5 μm the emission is dominated by stellar sources, the fainter ones merging into an unresolved background. At 5.8 and 8 μm the stellar sources are fainter, and large-scale diffuse emission from the ISM of the Galaxy's central molecular zone becomes prominent. The survey reveals that the 8-to-5.8 μm color of the ISM emission is highly uniform across the surveyed region. This uniform color is consistent with a flat extinction law and emission from polycyclic aromatic hydrocarbons (PAHs). Models indicate that this broadband color should not be expected to change if the incident radiation field heating the dust and PAHs is ~10^4 times that of the solar neighborhood. Other regions of very red emission indicate cases where thick dust clouds obscure deeply embedded objects or very early stages of star formation
Spin phonon coupling in frustrated magnet CdCrO
The infrared phonon spectrum of the spinel CdCr2O4 is measured as a function
temperature from 6 K to 300K. The triply degenerate Cr phonons soften in the
paramagnetic phase as temperature is lowered below 100 K and then split into a
singlet and doublet in the low T antiferromagnetic phase which is tetragonally
distorted to relieve the geometric frustration in the pyrochlore lattice of
Cr ions. The phonon splitting is inconsistent with the simple increase
(decrease) in the force constants due to deceasing (increasing) bond lengths in
the tetragonal phase. Rather they correspond to changes in the force constants
due to the magnetic order in the antiferromagnetic state. The phonon splitting
in this system is opposite of that observed earlier in ZnCr2O4 as predicted by
theory. The magnitude of the splitting gives a measure of the spin phonon
coupling strength which is smaller than in the case of ZnCr2O4.Comment: 4.2 pages, 4 figures, 1 reference added, submmite
spl(2,1) dynamical supersymmetry and suppression of ferromagnetism in flat band double-exchange models
The low energy spectrum of the ferromagnetic Kondo lattice model on a N-site
complete graph extended with on-site repulsion is obtained from the underlying
spl(2,1) algebra properties in the strong coupling limit. The ferromagnetic
ground state is realized for 1 and N+1 electrons only. We identify the large
density of states to be responsible for the suppression of the ferromagnetic
state and argue that a similar situation is encountered in the Kagome,
pyrochlore, and other lattices with flat bands in their one-particle density of
states.Comment: 7 pages, 1 figur
Absence of ferromagnetism in Co and Mn substituted polycrystalline ZnO
We discuss the properties of semiconducting bulk ZnO when substituted with
the magnetic transition metal ions Mn and Co, with substituent fraction ranging
from = 0.02 to = 0.15. The magnetic properties were measured as a
function of magnetic field and temperature and we find no evidence for magnetic
ordering in these systems down to = 2 K. The magnetization can be fit by
the sum of a Curie-Weiss term with a Weiss temperature of 100 K and
a Curie term. We attribute this behavior to contributions from both \textit{t}M
ions with \textit{t}M nearest neighbors and from isolated spins. This
particular functional form for the susceptibility is used to explain why no
ordering is observed in \textit{t}M substituted ZnO samples despite the large
values of the Weiss temperature. We also discuss in detail the methods we used
to minimize any impurity contributions to the magnetic signal.Comment: 6 pages, 4 figures (revised
A New Comprehensive 2-D Model of the Point Spread Functions of the XMM-Newton EPIC Telescopes : Spurious Source Suppression and Improved Positional Accuracy
We describe here a new full 2-D parameterization of the PSFs of the three
XMM-Newton EPIC telescopes as a function of instrument, energy, off-axis angle
and azimuthal angle, covering the whole field-of-view of the three EPIC
detectors. It models the general PSF envelopes, the primary and secondary
spokes, their radial dependencies, and the large-scale azimuthal variations.
This PSF model has been constructed via the stacking and centering of a large
number of bright, but not significantly piled-up point sources from the full
field-of-view of each EPIC detector, and azimuthally filtering the resultant
PSF envelopes to form the spoke structures and the gross azimuthal shapes
observed. This PSF model is available for use within the XMM-Newton Science
Analysis System via the usage of Current Calibration Files XRTi_XPSF_0011.CCF
and later versions. Initial source-searching tests showed substantial
reductions in the numbers of spurious sources being detected in the wings of
bright point sources. Furthermore, we have uncovered a systematic error in the
previous PSF system, affecting the entire mission to date, whereby returned
source RA and Dec values are seen to vary sinusoidally about the true position
(amplitude ~0.8") with source azimuthal position. The new PSF system is now
available and is seen as a major improvement with regard to the detection of
spurious sources. The new PSF also largely removes the discovered astrometry
error and is seen to improve the positional accuracy of EPIC. The modular
nature of the PSF system allows for further refinements in the future.Comment: Accepted for publication in A&A. 15 pages, 13 figures (some of
reduced quality). A full-resolution version is available at
http://www.star.le.ac.uk/~amr30/amr_PSFpaper.pd
Comment on "Feynman Effective Classical Potential in the Schrodinger Formulation"
We comment on the paper "Feynman Effective Classical Potential in the
Schrodinger Formulation"[Phys. Rev. Lett. 81, 3303 (1998)]. We show that the
results in this paper about the time evolution of a wave packet in a double
well potential can be properly explained by resorting to a variational
principle for the effective action. A way to improve on these results is also
discussed.Comment: 1 page, 2eps figures, Revte
- …