158 research outputs found

    Long Noncoding RNAs Usher In a New Era in the Biology of Enhancers

    Get PDF
    Enhancer-associated long noncoding RNAs act over long distances and across chromosomes to activate transcription at distal promoters. Here, we address the latest advances made toward understanding the role of long noncoding RNA expression and the involvement of these RNAs in enhancer function through association with protein factors and modulation of chromatin structure

    A Human BRCA2 Complex Containing a Structural DNA Binding Component Influences Cell Cycle Progression

    Get PDF
    AbstractGermline mutations of the human BRCA2 gene confer susceptibility to breast cancer. Although the function of the BRCA2 protein remains to be determined, murine cells homozygous for BRCA2 inactivation display chromosomal aberrations. We have isolated a 2 MDa BRCA2-containing complex and identified a structural DNA binding component, designated as BR CA2-A ssociated F actor 35 (BRAF35). BRAF35 contains a nonspecific DNA binding HMG domain and a kinesin-like coiled coil domain. Similar to BRCA2, BRAF35 mRNA expression levels in mouse embryos are highest in proliferating tissues with high mitotic index. Strikingly, nuclear staining revealed a close association of BRAF35/BRCA2 complex with condensed chromatin coincident with histone H3 phosphorylation. Importantly, antibody microinjection experiments suggest a role for BRCA2/BRAF35 complex in modulation of cell cycle progression

    Genomic positional conservation identifies topological anchor point RNAs linked to developmental loci.

    Get PDF
    BACKGROUND: The mammalian genome is transcribed into large numbers of long noncoding RNAs (lncRNAs), but the definition of functional lncRNA groups has proven difficult, partly due to their low sequence conservation and lack of identified shared properties. Here we consider promoter conservation and positional conservation as indicators of functional commonality. RESULTS: We identify 665 conserved lncRNA promoters in mouse and human that are preserved in genomic position relative to orthologous coding genes. These positionally conserved lncRNA genes are primarily associated with developmental transcription factor loci with which they are coexpressed in a tissue-specific manner. Over half of positionally conserved RNAs in this set are linked to chromatin organization structures, overlapping binding sites for the CTCF chromatin organiser and located at chromatin loop anchor points and borders of topologically associating domains (TADs). We define these RNAs as topological anchor point RNAs (tapRNAs). Characterization of these noncoding RNAs and their associated coding genes shows that they are functionally connected: they regulate each other's expression and influence the metastatic phenotype of cancer cells in vitro in a similar fashion. Furthermore, we find that tapRNAs contain conserved sequence domains that are enriched in motifs for zinc finger domain-containing RNA-binding proteins and transcription factors, whose binding sites are found mutated in cancers. CONCLUSIONS: This work leverages positional conservation to identify lncRNAs with potential importance in genome organization, development and disease. The evidence that many developmental transcription factors are physically and functionally connected to lncRNAs represents an exciting stepping-stone to further our understanding of genome regulation.VMC was supported by a PAICONICYT grant (PAI79170021) and a FONDECYT-CONICYT grant (11161020)

    Integrator restrains paraspeckles assembly by promoting isoform switching of the lncRNA NEAT1

    Get PDF
    RNA 3' end processing provides a source of transcriptome diversification which affects various (patho)-physiological processes. A prime example is the transcript isoform switch that leads to the read-through expression of the long non-coding RNA NEAT1_2, at the expense of the shorter polyadenylated transcript NEAT1_1. NEAT1_2 is required for assembly of paraspeckles (PS), nuclear bodies that protect cancer cells from oncogene-induced replication stress and chemotherapy. Searching for proteins that modulate this event, we identified factors involved in the 3' end processing of polyadenylated RNA and components of the Integrator complex. Perturbation experiments established that, by promoting the cleavage of NEAT1_2, Integrator forces NEAT1_2 to NEAT1_1 isoform switching and, thereby, restrains PS assembly. Consistently, low levels of Integrator subunits correlated with poorer prognosis of cancer patients exposed to chemotherapeutics. Our study establishes that Integrator regulates PS biogenesis and a link between Integrator, cancer biology, and chemosensitivity, which may be exploited therapeutically

    RNA Binding to CBP Stimulates Histone Acetylation and Transcription

    Get PDF
    CBP/p300 are transcription co-activators whose binding is a signature of enhancers, cis-regulatory elements that control patterns of gene expression in multicellular organisms. Active enhancers produce bi-directional enhancer RNAs (eRNAs) and display CBP/p300-dependent histone acetylation. Here, we demonstrate that CBP binds directly to RNAs in vivo and in vitro. RNAs bound to CBP in vivo include a large number of eRNAs. Using steady-state histone acetyltransferase (HAT) assays, we show that an RNA binding region in the HAT domain of CBP—a regulatory motif unique to CBP/p300—allows RNA to stimulate CBP’s HAT activity. At enhancers where CBP interacts with eRNAs, stimulation manifests in RNA-dependent changes in the histone acetylation mediated by CBP, such as H3K27ac, and by corresponding changes in gene expression. By interacting directly with CBP, eRNAs contribute to the unique chromatin structure at active enhancers, which, in turn, is required for regulation of target genes

    PINTing for p53

    No full text
    A new study identifies the long noncoding RNA Pint as a regulator of cellular proliferation and a target of the p53 pathway. See related Research, http://genomebiology.com/2013/14/9/R10
    • 

    corecore