6 research outputs found

    Hierarchical analysis and multi-scale modelling of rat cortical and trabecular bone

    Get PDF
    The aim of this study was to explore the hierarchical arrangement of structural properties in cortical and trabecular bone and to determine a mathematical model that accurately predicts the tissue's mechanical properties as a function of these indices. By using a variety of analytical techniques, we were able to characterize the structural and compositional properties of cortical and trabecular bones, as well as to determine the suitable mathematical model to predict the tissue's mechanical properties using a continuum micromechanics approach. Our hierarchical analysis demonstrated that the differences between cortical and trabecular bone reside mainly at the micro- and ultrastructural levels. By gaining a better appreciation of the similarities and differences between the two bone types, we would be able to provide a better assessment and understanding of their individual roles, as well as their contribution to bone health overall

    Optimal fractal-like hierarchical honeycombs

    No full text
    International audienceHexagonal honeycomb structures are known for their high strength and low weight. We construct a new class of fractal-appearing cellular metamaterials by replacing each three-edge vertex of a base hexagonal network with a smaller hexagon and iterating this process. The mechanical properties of the structure after different orders of the iteration are optimized. We find that the optimal structure (with highest in-plane stiffness for a given weight ratio) is self-similar but requires higher order hierarchy as the density vanishes. These results offer insights into how incorporating hierarchy in the material structure can create low-density metamaterials with desired properties and function

    Nanoscale Poroelasticity of the Tectorial Membrane Determines Hair Bundle Deflections

    No full text
    Stereociliary imprints in the tectorial membrane (TM) have been taken as evidence that outer hair cells are sensitive to shearing displacements of the TM, which plays a key role in shaping cochlear sensitivity and frequency selectivity via resonance and traveling wave mechanisms. However, the TM is highly hydrated (97% water by weight), suggesting that the TM may be flexible even at the level of single hair cells. Here we show that nanoscale oscillatory displacements of microscale spherical probes in contact with the TM are resisted by frequency-dependent forces that are in phase with TM displacement at low and high frequencies, but are in phase with TM velocity at transition frequencies. The phase lead can be as much as a quarter of a cycle, thereby contributing to frequency selectivity and stability of cochlear amplification.National Institutes of Health (U.S.) (Grant R01-DC000238)National Science Foundation (U.S.) (Grant CMMI-1536233)National Science Foundation (Grant 1122374
    corecore