1,354 research outputs found

    Fermi coordinates and modified Franklin transformation : A comparative study on rotational phenomena

    Full text link
    Employing a relativistic rotational transformation to study and analyze rotational phenomena, instead of the rotational transformations based on consecutive Lorentz transformations and Fermi coordinates, leads to different predictions. In this article, after a comparative study between Fermi metric of a uniformly rotating eccentric observer and the spacetime metric in the same observer's frame obtained through the modified Franklin transformation, we consider rotational phenomena including transverse Doppler effect and Sagnac effect in both formalisms and compare their predictions. We also discuss length measurements in the two formalisms.Comment: 21 pages, 2 figures, replaced with the published versio

    Electronic states in a graphene flake strained by a Gaussian bump

    Full text link
    The effect of strain in graphene is usually modeled by a pseudo-magnetic vector potential which is, however, derived in the limit of small strain. In realistic cases deviations are expected in view of graphene's very high strain tolerance, which can be up to 25%. Here we investigate the pseudo-magnetic field generated by a Gaussian bump and we show that it exhibits significant differences with numerical tight-binding results. Furthermore, we calculate the electronic states in the strained region for a hexagon shaped flake with armchair edges. We find that the six-fold symmetry of the wave functions inside the Gaussian bump is directly related to the different effect of strain along the fundamental directions of graphene: zigzag and armchair. Low energy electrons are strongly confined in the armchair directions and are localized on the carbon atoms of a single sublattice

    The use of pulse oximetry in evaluation of pulp vitality in immature permanent teeth

    Get PDF
    Background and aim: The current methods of pulp vitality assessment, either electric or thermal, are of limited use in children. Recently, traumatized and immature teeth may not respond to such methods and because such methods require subjective responses, it may not provide accurate results particularly in children. Pulse oximetry, an atraumatic approach, is used to measure oxygen saturation in vascular system. The aim of this study was to investigate the use of pulse oximetry to evaluate pulp vitality status in immature permanent teeth. Methods and materials: The study was conducted on 329 maxillary central and lateral incisors in children. The negative control group consisted of 10 root filled teeth. Systemic oxygen saturation was first measured on the thumb of the individual using a custom-made sensor. Oxygen saturation values of the teeth were then evaluated. The correlation between oxygen saturation measurement obtained from finger and tooth, and the correlation between oxygen saturation values and stage of root development were analyzed. A further comparison was made between the teeth with open and closed apex. Results: Mean oxygen values recorded in the patient's finger were 97.17, and mean oxygen values in the maxillary central and lateral incisors were 86.77 and 83/92, respectively. There was no significant correlation between blood oxygen levels in the finger and in the teeth. (P > 0.05) There was a significant negative correlation between the stage of root development and the blood oxygen levels in the patients' teeth. (P < 0.05) Mean oxygen values in the teeth with open apex were significantly higher than the teeth with closed apex. (P < 0.001). Conclusion: Vital teeth provided consistent oxygen saturation readings, and non-vital teeth recorded no oxygen saturation values. During tooth development, the oxygen saturation values decreased. These findings confirm that the pulse oximetry is capable of detecting the pulpal blood flow and oxygen saturation. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd

    Bilayer graphene Hall bar with a pn-junction

    Full text link
    We investigate the magnetic field dependence of the Hall and the bend resistances for a ballistic Hall bar structure containing a pn-junction sculptured from a bilayer of graphene. The electric response is obtained using the billiard model and we investigate the cases of bilayer graphene with and without a band gap. Two different conduction regimes are possible: ii) both sides of the junction have the same carrier type, and iiii) one side of the junction is n-type while the other one is p-type. The first case shows Hall plateau-like features in the Hall resistance that fade away as the band gap opens. The second case exhibits a bend resistance that is asymmetric in magnetic field as a consequence of snake states along the pn-interface, where the maximum is shifted away from zero magnetic field

    Spectroscopy of snake states using a graphene Hall bar

    Full text link
    An approach to observe snake states in a graphene Hall bar containing a pn-junction is proposed. The magnetic field dependence of the bend resistance in a ballistic graphene Hall bar structure containing a tilted pn-junction oscillates as a function of applied magnetic field. We show that each oscillation is due to a specific snake state that moves along the pn-interface. Furthermore depending on the value of the magnetic field and applied potential we can control the lead in which the electrons will end up and hence control the response of the system

    Magnetic field dependence of the atomic collapse state in graphene

    Full text link
    Quantum electrodynamics predicts that heavy atoms (Z>Zc≈170Z > Z_c \approx 170) will undergo the process of atomic collapse where electrons sink into the positron continuum and a new family of so-called collapsing states emerges. The relativistic electrons in graphene exhibit the same physics but at a much lower critical charge (Zc≈1Z_c \approx 1) which has made it possible to confirm this phenomenon experimentally. However, there exist conflicting predictions on the effect of a magnetic field on atomic collapse. These theoretical predictions are based on the continuum Dirac-Weyl equation, which does not have an exact analytical solution for the interplay of a supercritical Coulomb potential and the magnetic field. Approximative solutions have been proposed, but because the two effects compete on similar energy scales, the theoretical treatment varies depending on the regime which is being considered. These limitations are overcome here by starting from a tight-binding approach and computing exact numerical results. By avoiding special limit cases, we found a smooth evolution between the different regimes. We predict that the atomic collapse effect persists even after the magnetic field is activated and that the critical charge remains unchanged. We show that the atomic collapse regime is characterized: 1) by a series of Landau level anticrossings and 2) by the absence of B\sqrt{B} scaling of the Landau levels with regard to magnetic field strength

    Quasi-bound states of Schrodinger and Dirac electrons in magnetic quantum dot

    Full text link
    The properties of a two-dimensional electron are investigated in the presence of a circular step magnetic field profile. Both electrons with parabolic dispersion as well as Dirac electrons with linear dispersion are studied. We found that in such a magnetic quantum dot no electrons can be confined. Nevertheless close to the Landau levels quasi-bound states can exist with a rather long life time.Comment: 9 pages, 10 figure

    Bypassing the bandwidth theorem with PT symmetry

    Get PDF
    The beat time {\tau}_{fpt} associated with the energy transfer between two coupled oscillators is dictated by the bandwidth theorem which sets a lower bound {\tau}_{fpt}\sim 1/{\delta}{\omega}. We show, both experimentally and theoretically, that two coupled active LRC electrical oscillators with parity-time (PT) symmetry, bypass the lower bound imposed by the bandwidth theorem, reducing the beat time to zero while retaining a real valued spectrum and fixed eigenfrequency difference {\delta}{\omega}. Our results foster new design strategies which lead to (stable) pseudo-unitary wave evolution, and may allow for ultrafast computation, telecommunication, and signal processing.Comment: 5 pages, 3 figure
    • …
    corecore