17 research outputs found
The Dam1 ring binds to the E-hook of tubulin and diffuses along the microtubule.
There has been much effort in recent years aimed at understanding the molecular mechanism by which the Dam1 kinetochore complex is able to couple microtubule depolymerization to poleward movement. Both a biased diffusion and a forced walk model have been proposed, and several key functional aspects of Dam1-microtubule binding are disputed. Here, we investigate the elements involved in tubulin-Dam1 complex interactions and directly visualize Dam1 rings on microtubules in order to infer their dynamic behavior on the microtubule lattice and its likely relevance at the kinetochore. We find that the Dam1 complex has a preference for native tubulin over tubulin that is lacking its acidic C-terminal tail. Statistical mechanical analysis of images of Dam1 rings on microtubules, applied to both the distance between rings and the tilt angle of the rings with respect to the microtubule axis, supports a diffusive ring model. We also present a cryo-EM reconstruction of the Dam1 ring, likely the relevant assembly form of the complex for energy coupling during microtubule depolymerization in budding yeast. The present studies constitute a significant step forward by linking structural and biochemical observations toward a comprehensive understanding of the Dam1 complex
The James Webb Space Telescope Mission
Twenty-six years ago a small committee report, building on earlier studies,
expounded a compelling and poetic vision for the future of astronomy, calling
for an infrared-optimized space telescope with an aperture of at least .
With the support of their governments in the US, Europe, and Canada, 20,000
people realized that vision as the James Webb Space Telescope. A
generation of astronomers will celebrate their accomplishments for the life of
the mission, potentially as long as 20 years, and beyond. This report and the
scientific discoveries that follow are extended thank-you notes to the 20,000
team members. The telescope is working perfectly, with much better image
quality than expected. In this and accompanying papers, we give a brief
history, describe the observatory, outline its objectives and current observing
program, and discuss the inventions and people who made it possible. We cite
detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space
Telescope Overview, 29 pages, 4 figure
Structure-function insights into the yeast Dam1 kinetochore complex
Faithful segregation of genetic material during cell division requires the
dynamic but robust attachment of chromosomes to spindle microtubules during
all stages of mitosis. This regulated attachment occurs at kinetochores, which
are complex protein organelles that are essential for cell survival and genome
integrity. In budding yeast, in which a single microtubule attaches per
kinetochore, a heterodecamer known as the Dam1 complex (or DASH complex) is
required for proper chromosome segregation. Recent years have seen a burst of
structural and biophysical data concerning this interesting complex, which has
caught the attention of the mitosis research field. In vitro, the Dam1 complex
interacts directly with tubulin and self-assembles into ring structures around
the microtubule surface. The ring is capable of tracking with depolymerizing
ends, and a model has been proposed whereby the circular geometry of the
oligomeric Dam1 complex allows it to couple the depolymerization of
microtubules to processive chromosome movement in the absence of any
additional energy source. Although it is attractive and simple, several
important aspects of this model remain controversial. Additionally, the
generality of the Dam1 mechanism has been questioned owing to the fact that
there are no obvious Dam1 homologs beyond fungi. In this Commentary, we
discuss recent structure-function studies of this intriguing complex
Subunit organization in the Dam1 kinetochore complex and its ring around microtubules
Chromosomes segregate by interaction of spindle microtubules with kinetochores. In budding yeast the Dam1 complex forms rings around microtubules and recapitulates the functionality of a kinetochoreâmicrotubule attachment. Mapping of subunits within the complex and their organization within the ring has made it possible to generate a model of Dam1 ring assembly
Recommended from our members
The Dam1 ring binds to the E-hook of tubulin and diffuses along the microtubule.
There has been much effort in recent years aimed at understanding the molecular mechanism by which the Dam1 kinetochore complex is able to couple microtubule depolymerization to poleward movement. Both a biased diffusion and a forced walk model have been proposed, and several key functional aspects of Dam1-microtubule binding are disputed. Here, we investigate the elements involved in tubulin-Dam1 complex interactions and directly visualize Dam1 rings on microtubules in order to infer their dynamic behavior on the microtubule lattice and its likely relevance at the kinetochore. We find that the Dam1 complex has a preference for native tubulin over tubulin that is lacking its acidic C-terminal tail. Statistical mechanical analysis of images of Dam1 rings on microtubules, applied to both the distance between rings and the tilt angle of the rings with respect to the microtubule axis, supports a diffusive ring model. We also present a cryo-EM reconstruction of the Dam1 ring, likely the relevant assembly form of the complex for energy coupling during microtubule depolymerization in budding yeast. The present studies constitute a significant step forward by linking structural and biochemical observations toward a comprehensive understanding of the Dam1 complex
The Dam1 ring binds to the E-hook of tubulin and diffuses along the microtubule
There has been much effort in recent years aimed at understanding the molecular mechanism by which the Dam1 kinetochore complex is able to couple microtubule depolymerization to poleward movement. Both a biased diffusion and a forced walk model have been proposed, and several key functional aspects of Dam1-microtubule binding are disputed. Here, we investigate the elements involved in tubulin-Dam1 complex interactions and directly visualize Dam1 rings on microtubules in order to infer their dynamic behavior on the microtubule lattice and its likely relevance at the kinetochore. We find that the Dam1 complex has a preference for native tubulin over tubulin that is lacking its acidic C-terminal tail. Statistical mechanical analysis of images of Dam1 rings on microtubules, applied to both the distance between rings and the tilt angle of the rings with respect to the microtubule axis, supports a diffusive ring model. We also present a cryo-EM reconstruction of the Dam1 ring, likely the relevant assembly form of the complex for energy coupling during microtubule depolymerization in budding yeast. The present studies constitute a significant step forward by linking structural and biochemical observations toward a comprehensive understanding of the Dam1 complex
The Ndc80 kinetochore complex forms oligomeric arrays along microtubules
The Ndc80 complex is a key site of regulated kinetochore-microtubule attachment, but the molecular mechanism underlying its function remains unknown. Here we present a subnanometer resolution cryo-electron microscopy reconstruction of the human Ndc80 complex bound to microtubules, sufficient for precise docking of crystal structures of the component proteins. We find that Ndc80 binds the microtubule with a tubulin monomer repeat, recognizing α- and ÎČ-tubulin at both intra- and inter-dimer interfaces in a manner that is sensitive to tubulin conformation. Furthermore, Ndc80 complexes self-associate along protofilaments via interactions mediated by the amino-terminal tail of the Ndc80 protein, the site of phospho-regulation by the Aurora B kinase. Ndc80's mode of interaction with the microtubule and its oligomerization suggest a mechanism by which Aurora B could regulate the stability of load-bearing Ndc80-microtubule attachments