6,036 research outputs found

    On the Distribution of the Sum of n Non-Identically Distributed Uniform Random Variables

    Full text link
    The distribution of the sum of independent identically distributed uniform random variables is well-known. However, it is sometimes necessary to analyze data which have been drawn from different uniform distributions. By inverting the characteristic function, we derive explicit formulae for the distribution of the sum of n non-identically distributed uniform random variables in both the continuous and the discrete case. The results, though involved, have a certain elegance. As examples, we derive from our general formulae some special cases which have appeared in the literature.Comment: 20 page

    Theoretical analysis of perching and hovering maneuvers

    Get PDF
    Unsteady aerodynamic phenomena are encountered in a large number of modern aerospace and non-aerospace applications. Leading edge vortices (LEVs) are of particular interest because of their large impact on the forces and performance. In rotorcraft applications, they cause large vibrations and torsional loads (dynamic stall), affecting the performance adversely. In insect flight however, they contribute positively by enabling high-lift flight. Identifying the conditions that result in LEV formation and modeling their effects on the flow is an important ongoing challenge. Perching (airfoil decelerates to rest) and hovering (zero freestream velocity) maneuvers are of special interest. In earlier work by the authors, a Leading Edge Suction Parameter (LESP) was developed to predict LEV formation for airfoils undergoing arbitrary variation in pitch and plunge at a constant freestream velocity. In this research, the LESP criterion is extended to situations where the freestream velocity is varying or zero. A point-vortex model based on this criterion is developed and results from the model are compared against those from a computational fluid dynamics (CFD) method. Abstractions of perching and hovering maneuvers are used to validate the low-order model's performance in highly unsteady vortex-dominated flows, where the time-varying freestream/translational velocity is small in magnitude compared to the other contributions to the velocity experienced by the leading edge region of the airfoil. Time instants of LEV formation, flow topologies and force coefficient histories for the various motion kinematics from the low-order model and CFD are obtained and compared. The LESP criterion is seen to be successful in predicting the start of LEV formation and the point-vortex method is effective in modeling the flow development and forces on the airfoil. Typical run-times for the low-order method are between 30-40 seconds, making it a potentially convenient tool for control/design applications

    Hormonal responses of the fish, Cyprinus carpio, to environmental lead exposure

    Get PDF
    The present study reports the acute and sublethal toxicity of lead nitrate on plasma cortisol and prolactin level of a freshwater fish, Cyprinus carpio. The median lethal concentration of lead nitrate to fish for 24 h was found to be 4.10 ppm. 1/10th of the LC50 concentration of the lead nitrate (0.41 ppm) was taken for sublethal concentration. During acute and sublethal treatment the plasma cortisol level increased throughout the study period showing a direct relationship with exposure period. Similarly, plasma prolactin level was increased during acute treatment. However during sublethal treatment plasma prolactin level was increased up to 14th day and then declined. The significant increase of plasma cortisol level might have resulted from the release of cortisol from the interrenal tissue as a mechanism of coping up with stress or impaired immune function. The elevated level of plasma prolactin may be a step to reestablish ionic equilibrium due to the disturbances caused by the metal. Whereas the decline in plasma prolactin level indicate the destruction of prolactin cells due to metal toxicity. The alterations of the hormonal levels may be used as a potential biomarker and also can establish the ability of endocrine tissues to respond to their appropriate releasing factors

    Experimental Characterisation of GLass Aluminum REinforced (GLARE™) laminates

    Get PDF
    Fibre metal laminates such as GLARE™ have found promising application in the aerospace industry. These laminates were developed at the structures and materials laboratory of Delft University of Technology, Netherlands. GLARE™ is a material belonging to the family of Fibre Metal Laminates consisting of thin aluminum layers bonded with unidirectional S2-Glass fibres with an adhesive. Aluminum and S2-Glass when combined as a hybrid material can provide best features of the both metals and composites. These materials have excellent fatigue, impact and damage tolerance characteristics and a lower density compared to aluminum. GLARE™ has found major application in front and aft upper fuselage, leading edges of empennages of advanced civil aircrafts like A380. This document looks into the evaluation of two configuration of GLARE™ for its mechanical and impact characteristics. The mechanical characterisation was carried out for tensile, compression, Flexure, ILSS, Open Hole Tension, Open Hole Compression and Shear (Iosipescu). The impact behaviour were characterised based on a low velocity drop weight impact carried on these laminates. The study shows that the basic properties evaluated were more dictated by the property of the S2-Glass used. The studies show that GLARE™ laminates posses’ high impact damage resistance compared to other composite material. All the test datas generated for this study will be brought out in this document

    Observation of ferromagnetic resonance in strontium ruthenate (SrRuO3)

    Get PDF
    We report the observation of ferromagnetic resonance (FMR) in SrRuO3 using the time-resolved magneto-optical Kerr effect. The FMR oscillations in the time-domain appear in response to a sudden, optically induced change in the direction of easy-axis anistropy. The high FMR frequency, 250 GHz, and large Gilbert damping parameter, alpha ~ 1, are consistent with strong spin-orbit coupling. We find that the parameters associated with the magnetization dynamics, including alpha, have a non-monotonic temperature dependence, suggestive of a link to the anomalous Hall effect.Comment: submitted to Phys. Rev. Let
    corecore