46 research outputs found
H-2, H-3, He-3 production in solar flares
The production of deuterium, tritium, and helium-3 from nuclear reactions of accelerated charged particles is evaluated with the ambient solar atmosphere. Updated cross sections and kinematics are used, calculations are extended to very low energies (approximates 0.1 MeV/nucleon), and the angular distribution of the secondary particles is calculated. The calculations are compared with data on accelerated isotopes from solar flares. In particular, the August 1972 events are considered for which both He-3 and nuclear gamma rays were observed. An explanation for He-3-rich events is provided in terms of the angular distributions of secondary isotopes, and the flux of 2.2 MeV gamma rays from such flares are also predicted
Solar He-3: Information from nuclear reactions in flares
Information on solar He-3 from nuclear reactions in flares was considered. Consideration was also given to the development of models for these reactions as well as the abundance of He-3 in the photosphere. Data show that abundances may be explained by nuclear reactions of flare acceleration protons and alpha particles with the ambient atmosphere, provided that various assumptions are made on the directionality of the interacting beams and acceleration of the particles after production
Issues of LiBeB, Oxygen and Iron Evolution
We discuss the highlights of our recent research, specifically the refractory
vs. volatile interpretation of the rise of [O/Fe] with decreasing [Fe/H], and
the issue of primary vs. secondary evolution of Be.Comment: latex 2 pages, to be published in the Proceedings of the "Cosmic
Evolution" conference held in Paris, November 2000 (World Scientific
Nuclear gamma rays from energetic particle interactions
Gamma ray line emission from nuclear deexcitation following energetic particle reactions is evaluated. The compiled nuclear data and the calculated gamma ray spectra and intensities can be used for the study of astrophysical sites which contain large fluxes of energetic protons and nuclei. A detailed evaluation of gamma ray line production in the interstellar medium is made
An interpretation of the observed oxygen and nitrogen enhancements in low energy cosmic rays
It is proposed that the enhancements of cosmic ray oxygen and nitrogen observed at approximately 10 MeV/nucleon could result from neutral interstellar particles which are swept into the solar cavity. This is caused by motion of the sun through the interstellar medium, and the particles are subsequently ionized and accelerated
Nuclear processes in the jets of SS433
The very narrow gamma-ray lines observed at 1.495 and 6.695 MeV from SS433 which are blueshifted 1.369 and 6.129 emissions from deexcitations of (24)Mg* and (16)O* in grains moving with the jets and inelastically excited by interactions with the ambient medium are discussed. Energetic particle interactions in grains produce very narrow gamma ray lines from deexcitation of nuclear levels whose lifetimes are long enough that the excited nuclei stop before deexcitation. The presence of grains in the jets resolves hitherto discussed difficulties of inelastic excitation models for gamma ray production in SS433, the very narrow widths of the observed lines and the absence of other strong lines, expected from abundant elements. A model is proposed which could be distinguished from a previously proposed fusion model by gamma ray line observations
Light Elements and Cosmic Rays in the Early Galaxy
We derive constraints on the cosmic rays responsible for the Be and part of
the B observed in stars formed in the early Galaxy: the cosmic rays cannot be
accelerated from the ISM; their energy spectrum must be relatively hard (the
bulk of the nuclear reactions should occur at 30 MeV/nucl); and only
10 erg/SNII in high metallicity, accelerated particle kinetic energy
could suffice to produce the Be and B. The reverse SNII shock could accelerate
the particles.Comment: 5 pages LATEX using paspconf.sty file with one embedded eps figure
using psfig. In press, Proc. Goddard High Resolution Spectrograph Symposium,
PASP, 199