2 research outputs found
Ageing in the critical contact process: a Monte Carlo study
The long-time dynamics of the critical contact process which is brought
suddenly out of an uncorrelated initial state undergoes ageing in close analogy
with quenched magnetic systems. In particular, we show through Monte Carlo
simulations in one and two dimensions and through mean-field theory that
time-translation invariance is broken and that dynamical scaling holds. We find
that the autocorrelation and autoresponse exponents lambda_{Gamma} and lambda_R
are equal but, in contrast to systems relaxing to equilibrium, the ageing
exponents a and b are distinct. A recent proposal to define a non-equilibrium
temperature through the short-time limit of the fluctuation-dissipation ratio
is therefore not applicable.Comment: 18 pages, 7 figures, Latex2e with IOP macros; final for
On the definition of a unique effective temperature for non-equilibrium critical systems
We consider the problem of the definition of an effective temperature via the
long-time limit of the fluctuation-dissipation ratio (FDR) after a quench from
the disordered state to the critical point of an O(N) model with dissipative
dynamics. The scaling forms of the response and correlation functions of a
generic observable are derived from the solutions of the corresponding
Renormalization Group equations. We show that within the Gaussian approximation
all the local observables have the same FDR, allowing for a definition of a
unique effective temperature. This is no longer the case when fluctuations are
taken into account beyond that approximation, as shown by a computation up to
the first order in the epsilon-expansion for two quadratic observables. This
implies that, contrarily to what often conjectured, a unique effective
temperature can not be defined for this class of models.Comment: 32 pages, 5 figures. Minor changes, published versio