27 research outputs found
Parasystole in a Mahaim Accessory Pathway
AbstractAutomaticity has been described in Mahaim pathways, both spontaneously and during radiofrequency ablation. We describe an unusual case of automatic rhythm from a Mahaim pathway presenting as parasystole. The parasystolic beats were also found to initiate tachycardia, resulting in initial presentation with incessant tachycardia and tachycardia induced cardiomyopathy
Rapid detection of white spot syndrome virus (WSSV) of Penaeus monodon by latex agglutination test using monoclonal antibodies
Latex beads were sensitized with monoclonal antibodies (MAb) rose against VP28 of WSSV. The optimum concentration of MAb required to sensitize the latex beads was 125 µg/ml. The sensitized latex beads were used to detect WSSV from PCR-positive stomach tissue homogenates obtained from infected shrimp. Stomach tissue homogenates from WSSV-infected shrimp agglutinated the sensitized latex beads within 10 minutes, while uninfected samples did not produce any agglutination, although non-specific agglutinations were observed in some samples. The analytical sensitivity, analytical specificity, diagnostic sensitivity and diagnostic specificity of the (LAT) agglutination test were assessed. The analytical sensitivity of the test was 40 ng of purified WSSV (2 µg/ml). The sensitized latex beads did not agglutinate with normal shrimp tissue or MBV-infected tissue homogenate. The test has a diagnostic sensitivity of 70 and 45%, respectively, compared to single-step and nested PCR. The diagnostic specificity of the test was 82%. This test is a simple and rapid on-farm test which can be used to corroborate clinical signs for the detection of WSSV in grow-out ponds
A Life Threatening Rash, an Unexpected Cause
We describe a 74-year-old man with purpura fulminans and altered sensorium following an acute febrile illness. Intensive sepsis management was to no avail, until institution of doxycycline therapy following confirmation of scrub typhus. Empirical doxycycline needs to be considered in endemic areas for patients presenting with purpura fulminans
Persistent Depot of Triamcinolone Acetonide after a Single Intravitreal Injection
The persistence of depot of triamcinolone at four months following a single intravitreal injection is described
Parasystole in a Mahaim Accessory Pathway
Automaticity has been described in Mahaim pathways, both spontaneously and during radiofrequency ablation. We describe an unusual case of automatic rhythm from a Mahaim pathway presenting as parasystole. The parasystolic beats were also found to initiate tachycardia, resulting in initial presentation with incessant tachycardia and tachycardia induced cardiomyopathy
Synthesis, structure, growth and physical properties of a novel organic NLO crystal: 1,3-Dimethylurea dimethylammonium picrate
A novel noncentrosymmetric crystal was prepared from 1,3-dimethylurea dimethylammonium picrate, C(11)H(18)N(6)O(8) (DMUP), which was designed for second harmonic generation. DMUP crystals exist in noncentro symmetric space group Cmc2(1) with unit cell dimensions a = 14.288(4) angstrom, b = 17.023(5)angstrom, c = 6.8268(13) angstrom, alpha = beta = gamma = 90 degrees and volume = 1660.5(8) angstrom(3). The crystal structure of DMUP has been determined using single crystal X-ray diffraction studies. The single crystals of DMUP were successfully grown by the slow evaporation method with dimensions 10 mm x 4 mm x 3 mm using dimethylformamide as solvent. The structural perfection of the grown crystals has been analysed by High-resolution X-ray diffraction (HRXRD) rocking curve measurements. Powder test with Neodymium-doped Yttrium aluminum garnet (Nd:YAG) laser radiation shows a high second harmonic generation (SHG). The laser induced surface damage threshold for the grown crystal was measured using Nd:YAG laser. (C) 2010 Elsevier Ltd. All rights reserved
Ligand-Dependent Downregulation of Guanylyl Cyclase/Natriuretic Peptide Receptor-A: Role of miR-128 and miR-195
Cardiac hormones act on the regulation of blood pressure (BP) and cardiovascular homeostasis. These hormones include atrial and brain natriuretic peptides (ANP, BNP) and activate natriuretic peptide receptor-A (NPRA), which enhance natriuresis, diuresis, and vasorelaxation. In this study, we established the ANP-dependent homologous downregulation of NPRA using human embryonic kidney-293 (HEK-293) cells expressing recombinant receptor and MA-10 cells harboring native endogenous NPRA. The prolonged pretreatment of cells with ANP caused a time- and dose-dependent decrease in 125I-ANP binding, Guanylyl cyclase (GC) activity of receptor, and intracellular accumulation of cGMP leading to downregulation of NPRA. Treatment with ANP (100 nM) for 12 h led to an 80% decrease in 125I-ANP binding to its receptor, and BNP decreased it by 62%. Neither 100 nM c-ANF (truncated ANF) nor C-type natriuretic peptide (CNP) had any effect. ANP (100 nM) treatment also decreased GC activity by 68% and intracellular accumulation cGMP levels by 45%, while the NPRA antagonist A71915 (1 µM) almost completely blocked ANP-dependent downregulation of NPRA. Treatment with the protein kinase G (PKG) stimulator 8-(4-chlorophenylthio)-cGMP (CPT-cGMP) (1 µM) caused a significant increase in 125I-ANP binding, whereas the PKG inhibitor KT 5823 (1 µM) potentiated the effect of ANP on the downregulation of NPRA. The transfection of miR-128 significantly reduced NPRA protein levels by threefold compared to control cells. These results suggest that ligand-dependent mechanisms play important roles in the downregulation of NPRA in target cells
Genetic Disruption of Guanylyl Cyclase/Natriuretic Peptide Receptor-A Triggers Differential Cardiac Fibrosis and Disorders in Male and Female Mutant Mice: Role of TGF-β1/SMAD Signaling Pathway
The global targeted disruption of the natriuretic peptide receptor-A (NPRA) gene (Npr1) in mice provokes hypertension and cardiovascular dysfunction. The objective of this study was to determine the mechanisms regulating the development of cardiac fibrosis and dysfunction in Npr1 mutant mice. Npr1 knockout (Npr1−/−, 0-copy), heterozygous (Npr1+/−, 1-copy), and wild-type (Npr1+/+, 2-copy) mice were treated with the transforming growth factor (TGF)-β1 receptor (TGF-β1R) antagonist GW788388 (2 µg/g body weight/day; ip) for 28 days. Hearts were isolated and used for real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR), Western blot, and immunohistochemical analyses. The Npr1−/− (0-copy) mice showed a 6-fold induction of cardiac fibrosis and dysfunction with markedly induced expressions of collagen-1α (3.8-fold), monocyte chemoattractant protein (3.7-fold), connective tissue growth factor (CTGF, 5.3-fold), α-smooth muscle actin (α-SMA, 6.1-fold), TGF-βRI (4.3-fold), TGF-βRII (4.7-fold), and phosphorylated small mothers against decapentaplegic (pSMAD) proteins, including pSMAD-2 (3.2-fold) and pSMAD-3 (3.7-fold), compared with wild-type mice. The expressions of phosphorylated extracellular-regulated kinase ERK1/2 (pERK1/2), matrix metalloproteinases-2, -9, (MMP-2, -9), and proliferating cell nuclear antigen (PCNA) were also significantly upregulated in Npr1 0-copy mice. The treatment of mutant mice with GW788388 significantly blocked the expression of fibrotic markers, SMAD proteins, MMPs, and PCNA compared with the vehicle-treated control mice. The treatment with GW788388 significantly prevented cardiac dysfunctions in a sex-dependent manner in Npr1 0-copy and 1-copy mutant mice. The results suggest that the development of cardiac fibrosis and dysfunction in mutant mice is predominantly regulated through the TGF-β1-mediated SMAD-dependent pathway
A curious alliance: Sinus nodal dysfunction precipitating atrioventricular block
An elderly woman presented with recurrent syncope. Sinus bradycardia and sinoatrial block were seen on the electrocardiogram; however, PR interval prolongation after sinus pauses suggested atrioventricular conduction system disease. The occurrence of complete atrioventricular block after a pause during the electrophysiological study confirmed a diagnosis of paroxysmal atrioventricular block precipitated by sinus pauses secondary to sinus nodal disease
Sequential Anterograde and Retrograde Conduction Block during Radiofrequency Ablation of an Accessory Pathway
We present an interesting image showing sequential loss of anterograde, and subsequently, retrograde conduction during radiofrequency ablation of an accessory pathway. We discuss the possible mechanisms and prior literature concerning this interesting finding