2 research outputs found

    Fabrication, characterization, and photovoltaic performance of titanium dioxide/metal-organic framework composite

    Get PDF
    The titanium dioxide-metal-organic framework (TiO2−MOF) composite was prepared using the sol-gel method for photovoltaic applications. Raman analyses showed the presence of MOF clusters in the TiO2 sol-gel network. Using the Brunauer-Emmett-Teller method, the resultant composite material exhibited a surface area of 111.10 m2 g−1 as compared to the surface area values of 262.90 and 464.76 m2 g−1 for TiO2 and MOF, respectively. The small optical band gap values of 2.63 for direct electronic transition and 2.70 eV for indirect allowed electronic transition in TiO2/MOF composite were observed using ultraviolet-visible supported by cyclic voltammetry (CV)

    Influence of phthalocyanine nanowire dye on the performance of titanium dioxide-metal organic framework nanocomposite for dye-sensitized solar cells

    No full text
    In clean energy, dye-sensitized solar cells (DSSCs) have become a key tool for the photovoltaic effect. Copper phthalocyanine nanowire (CuPcNW) dyes can be used in DSSCs to generate low-cost devices, light-harvesting, fast electron transfer materials, and prevent recombination processes, as well as improve conductivity. This study investigates the effect of CuPcNW dye on TiO2, MOF, and TiO2-MOF in photovoltaic performance. Electrochemical characterizations such as cyclic voltammetry and electrochemical impedance spectroscopy (EIS) have also revealed the half-wave peak potentials of the ternary nanocomposite with values of 0.44 and 0.35 V for the oxidation and reduction reversible reactions. The EIS behavior revealed the improved conductivity of the nanocomposite with a value of 244 µS/cm. It was seen that the TiO2-MOF/CuPcNW nanocomposite achieved a maximum power conversion efficiency of 6.467 % owing to the presence of CuPcNW, which improved the photocurrent density, faster electron transport, and reduced charge recombination in the nanocomposite
    corecore