46 research outputs found

    Consequences of local gauge symmetry in empirical tight-binding theory

    Full text link
    A method for incorporating electromagnetic fields into empirical tight-binding theory is derived from the principle of local gauge symmetry. Gauge invariance is shown to be incompatible with empirical tight-binding theory unless a representation exists in which the coordinate operator is diagonal. The present approach takes this basis as fundamental and uses group theory to construct symmetrized linear combinations of discrete coordinate eigenkets. This produces orthogonal atomic-like "orbitals" that may be used as a tight-binding basis. The coordinate matrix in the latter basis includes intra-atomic matrix elements between different orbitals on the same atom. Lattice gauge theory is then used to define discrete electromagnetic fields and their interaction with electrons. Local gauge symmetry is shown to impose strong restrictions limiting the range of the Hamiltonian in the coordinate basis. The theory is applied to the semiconductors Ge and Si, for which it is shown that a basis of 15 orbitals per atom provides a satisfactory description of the valence bands and the lowest conduction bands. Calculations of the dielectric function demonstrate that this model yields an accurate joint density of states, but underestimates the oscillator strength by about 20% in comparison to a nonlocal empirical pseudopotential calculation.Comment: 23 pages, 7 figures, RevTeX4; submitted to Phys. Rev.

    Multiband tight-binding theory of disordered ABC semiconductor quantum dots: Application to the optical properties of alloyed CdZnSe nanocrystals

    Full text link
    Zero-dimensional nanocrystals, as obtained by chemical synthesis, offer a broad range of applications, as their spectrum and thus their excitation gap can be tailored by variation of their size. Additionally, nanocrystals of the type ABC can be realized by alloying of two pure compound semiconductor materials AC and BC, which allows for a continuous tuning of their absorption and emission spectrum with the concentration x. We use the single-particle energies and wave functions calculated from a multiband sp^3 empirical tight-binding model in combination with the configuration interaction scheme to calculate the optical properties of CdZnSe nanocrystals with a spherical shape. In contrast to common mean-field approaches like the virtual crystal approximation (VCA), we treat the disorder on a microscopic level by taking into account a finite number of realizations for each size and concentration. We then compare the results for the optical properties with recent experimental data and calculate the optical bowing coefficient for further sizes

    Ab-initio molecular dynamical study of a single transition metal atom on fullerene C

    No full text
    We report the first-principles Car-Parrinello molecular dynamics study of the behaviour of a single transition metal Ta atom on fullerene C60, at different temperatures, and for both neutral and charged clusters. We seek to characterise the motion of the lone Ta metal atom on the C60 surface, contrasting its behaviour both with that of three Ta atoms, as well as with a single alkali metal atom on the cage surface. Our earlier simulations on C60Ta3 had revealed that the Ta atoms on the surface of the fullerene are affected by a rather high mobility, and that the motion of these atoms is highly correlated due to Ta-atom-Ta-atom attraction. Earlier, experimental studies of a single metal atom (K, Rb) on the surface of a C60 molecule had led to the inference that at room temperature the metal atom skates freely over the surface, the first direct evidence for which was presented by us in earlier first principles molecular dynamical simulations

    Indirekte potentiometrische Plutoniumbestimmung

    No full text
    corecore