46 research outputs found

    Observation of glycine zipper and unanticipated occurrence of ambidextrous helices in the crystal structure of a chiral undecapeptide

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The <it>de novo </it>design of peptides and proteins has recently surfaced as an approach for investigating protein structure and function. This approach vitally tests our knowledge of protein folding and function, while also laying the groundwork for the fabrication of proteins with properties not precedented in nature. The success of these studies relies heavily on the ability to design relatively short peptides that can espouse stable secondary structures. To this end, substitution with α, β-dehydroamino acids, especially α, β-dehydrophenylalanine (ΔPhe) comes in use for spawning well-defined structural motifs. Introduction of ΔPhe induces β-bends in small and 3<sub>10</sub>-helices in longer peptide sequences.</p> <p>Results</p> <p>The present report is an investigation of the effect of incorporating two glycines in the middle of a ΔPhe containing undecapeptide. A de novo designed undecapeptide, Ac-Gly<sup>1</sup>-Ala<sup>2</sup>-ΔPhe<sup>3</sup>-Leu<sup>4</sup>-Gly<sup>5</sup>-ΔPhe<sup>6</sup>-Leu<sup>7</sup>-Gly<sup>8</sup>-ΔPhe<sup>9</sup>-Ala<sup>10</sup>-Gly<sup>11</sup>-NH<sub>2</sub>, was synthesized and characterized using X-ray diffraction and Circular Dichroism spectroscopic methods. Crystallographic studies suggest that, despite the presence of L-amino acid (L-Ala and L-Leu) residues in the middle of the sequence, the peptide adopts a 3<sub>10</sub>-helical conformation of ambidextrous screw sense, one of them a left-handed (A) and the other a right-handed (B) 3<sub>10</sub>-helix with A and B being antiparallel to each other. However, CD studies reveal that the undecapeptide exclusively adopts a right-handed 3<sub>10</sub>-helical conformation. In the crystal packing, three different interhelical interfaces, Leu-Leu, Gly-Gly and ΔPhe-ΔPhe are observed between the helices A and B. A network of C-H...O hydrogen bonds are observed at ΔPhe-ΔPhe and Gly-Gly interhelical interfaces. An important feature observed is the occurrence of glycine zipper motif at Gly-Gly interface. At this interface, the geometric pattern of interhelical interactions seems to resemble those observed between helices in transmembrane (TM) proteins.</p> <p>Conclusion</p> <p>The present design strategy can thus be exploited in future work on de novo design of helical bundles of higher order and compaction utilizing ΔPhe residues along with GXXG motif.</p

    Functional Classification of Immune Regulatory Proteins

    Get PDF
    SummaryThe members of the immunoglobulin superfamily (IgSF) control innate and adaptive immunity and are prime targets for the treatment of autoimmune diseases, infectious diseases, and malignancies. We describe a computational method, termed the Brotherhood algorithm, which utilizes intermediate sequence information to classify proteins into functionally related families. This approach identifies functional relationships within the IgSF and predicts additional receptor-ligand interactions. As a specific example, we examine the nectin/nectin-like family of cell adhesion and signaling proteins and propose receptor-ligand interactions within this family. Guided by the Brotherhood approach, we present the high-resolution structural characterization of a homophilic interaction involving the class-I MHC-restricted T-cell-associated molecule, which we now classify as a nectin-like family member. The Brotherhood algorithm is likely to have a significant impact on structural immunology by identifying those proteins and complexes for which structural characterization will be particularly informative

    De novo design and characterization of an apolar helical hairpin peptide at atomic resolution: Compaction mediated by weak interactions

    Get PDF
    Design of helical super secondary structural motifs is expected to provide important scaffolds to incorporate functional sites, thus allowing the engineering of novel miniproteins with function. An α,β-dehydrophenylalanine containing 21-residue apolar peptide was designed to mimic the helical hairpin motif by using a simple geometrical design strategy. The synthetic peptide folds into the desired structure as assessed crystallographically at 1.0-Å resolution. The two helices of the helical-hairpin motif, connected by a flexible (Gly)(4) linker, are docked to each other by the concerted influence of weak interactions. The folding of the peptide without binary patterning of amino acids, disulfide bonds, or metal ions is a remarkable observation. The results demonstrate that preferred interactions among the hydrophobic residues selectively discriminate their putative partners in space, leading to the unique folding of the peptide, also a hallmark of the unique folding of hydrophobic core in globular proteins. We demonstrate here the engineering of molecules by using weak interactions pointing to their possible further exploitation in the de novo design of protein super secondary structural elements

    Dehydrophenylalanine zippers: strong helix-helix clamping through a network of weak interactions

    No full text
    A decapeptide Boc-L-Ala-(ΔPhe)4-L-Ala-(ΔPhe)3-Gly-OMe (Peptide I) was synthesized to study the preferred screw sense of consecutive α,β-dehydrophenylalanine (ΔPhe) residues. Crystallographic and CD studies suggest that, despite the presence of two L-Ala residues in the sequence, the decapeptide does not have a preferred screw sense. The peptide crystallizes with two conformers per asymmetric unit, one of them a slightly distorted right-handed 310-helix (X) and the other a left-handed 310-helix (Y) with X and Y being antiparallel to each other. An unanticipated and interesting observation is that in the solid state, the two shape-complement molecules self-assemble and interact with an extensive network of C-H···O hydrogen bonds and π-π interactions, directed laterally to the helix axis with amazing regularity. Here, we present an atomic resolution picture of the weak interaction mediated mutual recognition of two secondary structural elements and its possible implication in understanding the specific folding of the hydrophobic core of globular proteins and exploitation in future work on de novo design

    Structure-Function Analysis and Insights into the Reduced Toxicity of Abrus precatorius Agglutinin I in Relation to Abrin

    No full text
    Abrin and agglutinin-I from the seeds of Abrus precatorius are type II ribosome-inactivating proteins that inhibit protein synthesis in eukaryotic cells. The two toxins share a high degree of sequence similarity; however, agglutinin-I is weaker in its activity. We compared the kinetics of protein synthesis inhibition by abrin and agglutinin-I in two different cell lines and found that \sim 200-2000-fold higher concentration of agglutinin-I is needed for the same degree of inhibition. Like abrin, agglutinin-I also induced apoptosis in the cells by triggering the intrinsic mitochondrial pathway, although at higher concentrations as compared with abrin. The reason for the decreased toxicity of agglutinin-I became apparent on the analysis of the crystal structure of agglutinin-I obtained by us in comparison with that of the reported structure of abrin. The overall protein folding of agglutinin-I is similar to that of abrin-a with a single disulfide bond holding the toxic A subunit and the lectin-like B-subunit together, constituting a heterodimer. However, there are significant differences in the secondary structural elements, mostly in the A chain. The substitution of Asn-200 in abrin-a with Pro-199 in agglutinin-I seems to be a major cause for the decreased toxicity of agglutinin-I. This perhaps is not a consequence of any kink formation by a proline residue in the helical segment, as reported by others earlier, but due to fewer interactions that proline can possibly have with the bound substrate

    De novo design and characterization of a helical hairpin eicosapeptide: emergence of an anion receptor in the linker region

    No full text
    De novo design of supersecondary structures is expected to provide useful molecular frameworks for the incorporation of functional sites as in proteins. A 21 residue long, dehydrophenylalanine-containing peptide has been de novo designed and its crystal structure determined. The apolar peptide folds into a helical hairpin supersecondary structure with two right-handed helices, connected by a tetraglycine linker. The helices of the hairpin interact with each other through a combination of C-H···O and N-H···O hydrogen bonds. The folding of the apolar peptide has been realized without the help of either metal ions or disulphide bonds. A remarkable feature of the peptide is the unanticipated occurrence of an anion binding motif in the linker region, strikingly similar in conformation and function to the "nest" motif seen in several proteins. The observation supports the view for the possible emergence of rudimentary functions over short sequence stretches in the early peptides under prebiotic conditions

    A Structural Basis for the Role of Nucleotide Specifying Residues in Regulating the Oligomerization of the Rv1625c Adenylyl Cyclase from M. tuberculosis

    No full text
    The Rv1625c Class III adenylyl cyclase from Mycobacterium tuberculosis is a homodimeric enzyme with two catalytic centers at the dimer interface, and shows sequence similarity with the mammalian adenylyl and guanylyl cyclases. Mutation of the substrate-specifying residues in the catalytic domain of Rv1625c, either independently or together, to those present in guanylyl cyclases not only failed to confer guanylyl cyclase activity to the protein, but also severely abrogated the adenylyl cyclase activity of the enzyme. Biochemical analysis revealed alterations in the behavior of the mutants on ion-exchange chromatography, indicating differences in the surface-exposed charge upon mutation of substrate-specifying residues. The mutant proteins showed alterations in oligomeric status as compared to the wild-type enzyme, and differing abilities to heterodimerize with the wild-type protein. The crystal structure of a mutant has been solved to a resolution of 2.7 \AA. On the basis of the structure, and additional biochemical studies, we provide possible reasons for the altered properties of the mutant proteins, as well as highlight unique structural features of the Rv1625c adenylyl cyclase
    corecore