12 research outputs found

    Mice with a Targeted Deletion of the Type 2 Deiodinase Are Insulin Resistant and Susceptible to Diet Induced Obesity

    Get PDF
    The type 2 iodothyronine deiodinase (D2) converts the pro-hormone thyroxine into T3 within target tissues. D2 is essential for a full thermogenic response of brown adipose tissue (BAT), and mice with a disrupted Dio2 gene (D2KO) have an impaired response to cold. BAT is also activated by overfeeding.After 6-weeks of HFD feeding D2KO mice gained 5.6% more body weight and had 28% more adipose tissue. Oxygen consumption (V0(2)) was not different between genotypes, but D2KO mice had an increased respiratory exchange ratio (RER), suggesting preferential use of carbohydrates. Consistent with this, serum free fatty acids and β-hydroxybutyrate were lower in D2KO mice on a HFD, while hepatic triglycerides were increased and glycogen content decreased. Neither genotype showed glucose intolerance, but D2KO mice had significantly higher insulin levels during GTT independent of diet. Accordingly, during ITT testing D2KO mice had a significantly reduced glucose uptake, consistent with insulin resistance. Gene expression levels in liver, muscle, and brown and white adipose tissue showed no differences that could account for the increased weight gain in D2KO mice. However, D2KO mice have higher PEPCK mRNA in liver suggesting increased gluconeogenesis, which could also contribute to their apparent insulin resistance.We conclude that the loss of the Dio2 gene has significant metabolic consequences. D2KO mice gain more weight on a HFD, suggesting a role for D2 in protection from diet-induced obesity. Further, D2KO mice appear to have a greater reliance on carbohydrates as a fuel source, and limited ability to mobilize and to burn fat. This results in increased fat storage in adipose tissue, hepatic steatosis, and depletion of liver glycogen in spite of increased gluconeogenesis. D2KO mice are also less responsive to insulin, independent of diet-induced obesity

    The protective effect of α-lipoic acid in doxorubicin induced cardiotoxicity in rats.

    No full text
    Includes bibliographical references (p. 60-67)This study examined the protective effects of α-lipoic acid in rats exposed to a cardiotoxic dose of the widely used chemotherapy agent doxorubicin. α-Lipoic acid significantly enhanced the survival of rats exposed to a lethal dose of doxorubicin (p<0.001). Morbidity was proportionally higher in rats treated with doxorubicin alone in contrast to rats treated with both doxorubicin and α-lipoic acid (p<0.001). Heart weights of rats treated with both α-lipoic acid and doxorubicin were similar to that of control rats, and controlling for whole body weight yielded similar results (p<0.001). α-Lipoic acid significantly reduced the cardiac microscopic damage caused by doxorubicin in rats (p<0.001). Representative micrographs supported a high degree of ultrastructural preservation in doxorubicin treated rats upon concomitant treatment with α-lipoic acid. The conclusion of this study is that α-lipoic acid is effective in protecting rats from doxorubicin induced cardiotoxicity.by Waile Ramadan.M.S

    Type-2 Iodothyronine 5\u27Deiodinase (D2) in Skeletal Muscle of C57Bl/6 Mice. II. Evidence for a Role of D2 in the Hypermetabolism of Thyroid Hormone Receptor {alpha}-Deficient Mice

    No full text
    Mice with ablation of the Thra gene have cold intolerance due to an as yet undefined defect in the activation of brown adipose tissue (BAT) uncoupling protein (UCP). They develop an alternate form of facultative thermogenesis, activated at temperatures below thermoneutrality and associated with hypermetabolism and reduced sensitivity to diet-induced obesity. A consistent finding in Thra-0/0 mice is increased type-2 iodothyronine deiodinase (D2) mRNA in skeletal muscle and other tissues. With an improved assay to measure D2 activity, we show here that this enzyme activity is increased in proportion to the mRNA and as a function of the ambient cold. The activation is mediated by the sympathetic nervous system in Thra-0/0, as it is in wild-type genotype mice, but the sympathetic nervous system effect is greater in Thra-0/0 mice. Using D2-ablated mice (Dio2-/-), we reported elsewhere and show here that, in spite of sharing a severe deficiency in BAT thermogenesis with Thra-0/0 and UCP1-knockout mice, they do not have an increase in oxygen consumption, and they gain more weight than wild-type controls when fed a high-fat diet. UCP3 mRNA is highly responsive to thyroid hormone, and it is increased in Thra-0/0 mice, particularly when fed high-fat diets. We show here that muscle UCP3 mRNA in hypothyroid Thra-0/0 mice is responsive to small dose-short regimens of T(4), indicating a role for locally, D2-generated T(3). Lastly, we show that bile acids stimulate not only BAT but also muscle D2 activity, and this is associated with stimulation of muscle UCP3 mRNA expression provided T(4) is present. These observations strongly support the concept that enhanced D2 activity in Thra-0/0 plays a critical role in their alternate form of facultative thermogenesis, stimulating increased fat oxidation by increasing local T(3) generation in skeletal muscle

    Type-2 iodothyronine deiodinase in mouse skeletal muscles

    No full text

    Type-2 iodothyronine 5\u27deiodinase in skeletal muscle of C57BL/6 mice. I. Identity, subcellular localization, and characterization

    No full text
    RT-PCR shows that mouse skeletal muscle contains type-2 iodothyronine deiodinase (D2) mRNA. However, the D2 activity has been hard to measure. Except for newborn mice, muscle homogenates have no detectable activity. However, we have reported D2 activity in mouse muscle microsomes. As the mRNA, activity is higher in slow- than in fast-twitch muscle. We addressed here the major problems in measuring D2 activity in muscle by: homogenizing muscle in high salt to improve yield of membranous structures; separating postmitochondrial supernatant between 38 and 50% sucrose, to eliminate lighter membranes lacking D2; washing these with 0.1 M Na(2)CO(3) to eliminate additional contaminating proteins; pretreating all buffers with Chelex, to eliminate catalytic metals; and eliminating the EDTA from the assay, as this can bind iron that enhances dithiothreitol oxidation and promotes peroxidation reactions. Maximum velocity of T(3) generation by postgradient microsomes from red muscles was approximately 1100 fmol/(h · mg) protein with a Michaelis-Menten constant for T(4) of 1.5 nM. D2-specific activity of Na(2)CO(3)-washed microsomes was 6-10 times higher. The enrichment in D2 activity increased in parallel with the capacity of microsomes to load (sarco/endoplasmic reticulum Ca(2+)-ATPase) and bind Ca(2+) (calsequestrin), indicating that D2 resides in the inner sarcoplasmic reticulum, close to the nuclei. The presence of D3 in the sarcolemma suggests that the most of D2-generated T(3) acts locally. Estimates from maximum velocity, Michaelis-Menten constant, and muscle T(4) content suggest that mouse red, type-1, aerobic mouse muscle fibers can generate physiologically relevant amounts of T(3) and, further, that muscle D2 plays an important role in thyroid hormone-dependent muscle thermogenesis

    Mice with a targeted deletion of the type 2 deiodinase are insulin resistant and susceptible to diet induced obesity

    No full text
    BACKGROUND: The type 2 iodothyronine deiodinase (D2) converts the pro-hormone thyroxine into T3 within target tissues. D2 is essential for a full thermogenic response of brown adipose tissue (BAT), and mice with a disrupted Dio2 gene (D2KO) have an impaired response to cold. BAT is also activated by overfeeding. METHODOLOGY/PRINCIPAL FINDINGS: After 6-weeks of HFD feeding D2KO mice gained 5.6% more body weight and had 28% more adipose tissue. Oxygen consumption (V0(2)) was not different between genotypes, but D2KO mice had an increased respiratory exchange ratio (RER), suggesting preferential use of carbohydrates. Consistent with this, serum free fatty acids and β-hydroxybutyrate were lower in D2KO mice on a HFD, while hepatic triglycerides were increased and glycogen content decreased. Neither genotype showed glucose intolerance, but D2KO mice had significantly higher insulin levels during GTT independent of diet. Accordingly, during ITT testing D2KO mice had a significantly reduced glucose uptake, consistent with insulin resistance. Gene expression levels in liver, muscle, and brown and white adipose tissue showed no differences that could account for the increased weight gain in D2KO mice. However, D2KO mice have higher PEPCK mRNA in liver suggesting increased gluconeogenesis, which could also contribute to their apparent insulin resistance. CONCLUSIONS/SIGNIFICANCE: We conclude that the loss of the Dio2 gene has significant metabolic consequences. D2KO mice gain more weight on a HFD, suggesting a role for D2 in protection from diet-induced obesity. Further, D2KO mice appear to have a greater reliance on carbohydrates as a fuel source, and limited ability to mobilize and to burn fat. This results in increased fat storage in adipose tissue, hepatic steatosis, and depletion of liver glycogen in spite of increased gluconeogenesis. D2KO mice are also less responsive to insulin, independent of diet-induced obesity
    corecore