1,139 research outputs found

    Measurement of angular distributions by use of low-coherence interferometry for light-scattering spectroscopy

    Get PDF
    We present a novel interferometer for measuring angular distributions of backscattered light. The new system exploits a low-coherence source in a modified Michelson interferometer to provide depth resolution, as in optical coherence tomography, but includes an imaging system that permits the angle of the reference field to be varied in the detector plane by simple translation of an optical element. We employ this system to examine the angular distribution of light scattered by polystyrene microspheres. The measured data indicate that size information can be recovered from angular-scattering distributions and that the coherence length of the source influences the applicability of Mie theory

    Phase-dispersion optical tomography

    Get PDF
    We report on phase-dispersion optical tomography, a new imaging technique based on phase measurements using low-coherence interferometry. The technique simultaneously probes the target with fundamental and second-harmonic light and interferometrically measures the relative phase shift of the backscattered light fields. This phase change can arise either from reflection at an interface within a sample or from bulk refraction. We show that this highly sensitive 5 phase technique can complement optical coherence tomography, which measures electric field amplitude, by revealing otherwise undetectable dispersive variations in the sample

    Cavity ring-down technique and its application to the measurement of ultraslow velocities

    Get PDF
    We have developed a new ring-down technique that does not require a shutter to turn a probe laser on and off. With a rapid cavity scan we can measure a simple exponential cavity decay from which a cavity finesse can be found. When the cavity is scanned slowly, the cavity decay exhibits an amplitude modulation, and an analytic expression is derived for this modulation. With this new technique we measured the ultraslow relative velocity of the mirrors (of the order of micrometers per second) as well as the linewidth (~100 kHz) of the probe laser

    Spatial coherence of forward-scattered light in a turbid medium

    Get PDF
    We study spatially coherent forward-scattered light propagating in a turbid medium of moderate optical depth (0-9 mean free paths). Coherent detection was achieved by using a tilted heterodyne geometry, which desensitizes coherent detection of the attenuated incident light. We show that the degree of spatial coherence is significantly higher for light scattered only once in comparison with that for multiply scattered light and that it approaches a small constant value for large numbers of scattering events

    Phase-referenced interferometer with subwavelength and subhertz sensitivity applied to the study of cell membrane dynamics

    Get PDF
    We report a highly sensitive means of measuring cellular dynamics with a novel interferometer that can measure motional phase changes. The system is based on a modified Michelson interferometer with a composite laser beam of 1550-nm low-coherence light and 775-nm CW light. The sample is prepared on a coverslip that is highly reflective at 775nm. By referencing the heterodyne phase of the 1550-nm light reflected from the sample to that of the 775-nm light reflected from the coverslip, small motions in the sample are detected, and motional artifacts from vibrations in the interferometer are completely eliminated. We demonstrate that the system is sensitive to motions as small as 3.6nm and velocities as small as 1nm/s. Using the instrument, we study transient volume changes of a few (approximately three) cells in a monolayer immersed in weakly hypotonic and hypertonic solutions

    Determination of particle size by using the angular distribution of backscattered light as measured with low-coherence interferometry

    Get PDF
    We employ a novel interferometer to measure the angular distribution of light backscattered by a turbid medium. Through comparison of the measured data with the predictions of Mie theory, we are able to determine the size of the scatterers comprising the medium with subwavelength precision. As the technique is based on low-coherence interferometry, we are able to examine the evolution of the angular distribution of scattered light as it propagates into the medium. The effects of multiple scattering as a function of penetration depth in the medium are analyzed. We also present various considerations for extending this technique to determining structural information in biological tissues, such as the effects of a distribution of particle sizes and the need to average out speckle contributions

    A New Band System of the HgBr Molecule

    Get PDF

    Design of a PI Controller for Negative Output 1 & 3 -lift Main Series Switched Capacitor Push Pull Luo Converter

    Get PDF
    Classic converters like DC-DC converters are having the passive components such as switches, diodes, capacitors and inductors that are combined. By this size of the converter will be large and power density will be low. Power density of the converter can be increased by micro power consumption technique. Voltage-lift technique is the best technique to design circuits in electronics. For more power density, compact size and gain switched capacitors can be used and incorporated into the IC having lesser EMI. This work provide the performance evaluation of PI controller for Negative output push-pull switched capacitor DC-DC 1 lift and 3 lift Luo converter and also performance evaluation of chosen converter with PI controller. Mat lab and Simulink based simulation is carried out under line and load disturbances for performance evaluation

    Interferometric phase-dispersion microscopy

    Get PDF
    We describe a new scanning microscopy technique, phase-dispersion microscopy (PDM). The technique is based on measuring the phase difference between the fundamental and the second-harmonic light in a novel interferometer. PDM is highly sensitive to subtle refractive-index differences that are due to dispersion (differential optical path sensitivity, 5 nm). We apply PDM to measure minute amounts of DNA in solution and to study biological tissue sections. We demonstrate that PDM performs better than conventional phase-contrast microscopy in imaging dispersive and weakly scattering samples
    corecore