9 research outputs found

    Identification and genetic diversity analysis of Memecylon species using ISSR, RAPD and Gene-Based DNA barcoding tools

    Get PDF
    Background: Memecylon species are commonly used in Indian ethnomedical practices. The accurate identification is vital to enhance the drug's efficacy and biosafety. In the present study, PCR based techniques like RAPD, ISSR and DNA barcoding regions, such as 5s, psbA-trnH, rpoC1, ndh and atpF-atpH, were used to authenticate and analyze the diversity of five Memecylon species collected from Western Ghats of India. Results: Phylogenetic analysis clearly distinguished Memecylon malabaricum from Memecylon wightii and Memecylon umbellatum from Memecylon edule and clades formed are in accordance with morphological keys. In the RAPD and ISSR analyses, 27 accessions representing five Memecylon species were distinctly separated into three different clades. M. malabaricum and M. wightii grouped together and M. umbellatum, M. edule and Memecylon talbotianum grouped in the same clade with high Jaccard dissimilarity coefficient and bootstrap support between each node, indicating that these grouped species are phylogenetically similar. Conclusion: Data from the present study reveals that chloroplast psbA-trnH region could be used as a potential candidate region for identifying Memecylon species, and ISSR marker system could be used for estimating genetic diversity since it has high percent polymorphism compared to RAPD marker

    Identification of Biomarkers for Resistance to Fusarium oxysporum f. sp. cubense Infection and in Silico Studies in Musa paradisiaca Cultivar Puttabale through Proteomic Approach

    Full text link
    Panama wilt caused by Fusarium oxysporum f. sp. cubense (Foc) is one of the major disease constraints of banana production. Previously, we reported the disease resistance Musa paradisiaca cv. puttabale clones developed from Ethylmethanesulfonate and Foc culture filtrate against Foc inoculation. Here, the same resistant clones and susceptible clones were used for the study of protein accumulation against Foc inoculation by two-dimensional gel electrophoresis (2-DE), their expression pattern and an in silico approach. The present investigation revealed mass-spectrometry identified 16 proteins that were over accumulated and 5 proteins that were under accumulated as compared to the control. The polyphosphoinositide binding protein ssh2p (PBPssh2p) and Indoleacetic acid-induced-like (IAA) protein showed significant up-regulation and down-regulation. The docking of the pathogenesis-related protein (PR) with the fungal protein endopolygalacturonase (PG) exemplify the three ionic interactions and seven hydrophobic residues that tends to good interaction at the active site of PG with free energy of assembly dissociation (1.5 kcal/mol). The protein-ligand docking of the Peptide methionine sulfoxide reductase chloroplastic-like protein (PMSRc) with the ligand β-1,3 glucan showed minimum binding energy (−6.48 kcal/mol) and docking energy (−8.2 kcal/mol) with an interaction of nine amino-acid residues. These explorations accelerate the research in designing the host pathogen interaction studies for the better management of diseases

    Identification and genetic diversity analysis of Memecylon species using ISSR, RAPD and Gene-based DNA barcoding tools

    Get PDF
    Background: Memecylon species are commonly used in Indian ethnomedical practices. The accurate identification is vital to enhance the drug's efficacy and biosafety. In the present study, PCR based techniques like RAPD, ISSR and DNA barcoding regions, such as 5s, psbA-trnH, rpoC1, ndh and atpF-atpH, were used to authenticate and analyze the diversity of five Memecylon species collected from Western Ghats of India. Results: Phylogenetic analysis clearly distinguished Memecylon malabaricum from Memecylon wightii and Memecylon umbellatum from Memecylon edule and clades formed are in accordance with morphological keys. In the RAPD and ISSR analyses, 27 accessions representing five Memecylon species were distinctly separated into three different clades. M. malabaricum and M. wightii grouped together and M. umbellatum, M. edule and Memecylon talbotianum grouped in the same clade with high Jaccard dissimilarity coefficient and bootstrap support between each node, indicating that these grouped species are phylogenetically similar. Conclusion: Data from the present study reveals that chloroplast psbA-trnH region could be used as a potential candidate region for identifying Memecylon species, and ISSR marker system could be used for estimating genetic diversity since it has high percent polymorphism compared to RAPD marker

    Differential Multi-cellularity Is Required for the Adaptation for Bacillus licheniformis to Withstand Heavy Metals Toxicity

    Full text link
    Bacillus licheniformis is a multi-metal tolerant bacteria, isolated from the paddy rhizospheric soil sample. Upon the multiple metal toxicity, B. licheniformis altered their phenotypic/morphogenesis. Here we examined the effects of cadmium (Cd2+), chromium (Cr2+), and mercury (Hg2+) on the morphogenesis of B. licheniformis in comparison to control. We found that the ability of bacteria to grow effectively in presence of cadmium and chromium comes at a cost of acquiring cell density-driven mobility and reformation of filamentous to donut shape respectively. In particular, when bacteria grown on mercury it showed the bacteriostatic strategy to resist mercury. Furthermore, the findings suggest a large variation in the production of exo-polysaccharides (EPS) and suggest the possible role of EPS in gaining resistance to cadmium and chromium. Together this study identifies previously unknown characteristics of B. licheniformis to participate in bioremediation and provides the first evidence on positive effects of bacterial morphogenesis and the involvement of EPS in bacteria to resisting metal toxicity

    Inhibition of virus infection by transient expression of short hairpin RNA targeting the methyltransferase domain of Tobacco mosaic virus replicase

    Full text link
    One of the most efficient mechanisms by which plants protect themselves from viruses is the specific RNA-dependent silencing pathway termed post-transcriptional gene silencing (PTGS). Inhibition of Tobacco mosaicvirus in tobacco was demonstrated through transient expression of virus-derived short hairpin RNA encoding the methyltransferase domain of TMV replicase corresponding to the nucleotides 630 to 1,510 introduced through agro-infiltration into the leaves of tobacco plants. RT-PCR revealed that TMV infection was absent in hpRNA agro-infiltrated leaves while control leaves showed amplification of TMV. Protein analysis further confirmed the absence of TMV coat protein in hpRNA-containing leaves while it was prominent in the control leaves. Our data demonstrate that expression of hpRNA is an effective and predictable new approach to engineering resistance to TMV
    corecore