98 research outputs found

    An Aid for Mechanisation of Flight Control Systems on Micro-Computers

    Get PDF
    This paper deals with the development of an automated aid to translate the block diagram of flight control system (FCS) to assembly level code. By defining a suitable syntax and by building a matrix of inputs and outputs of the blocks, it becomes easy to translate the block diagram. It is also shown how the process of fault detection can be automated. The results obtained through the automated aid have been validated by ORACLE library using the block diagram of Cstar controller of F8 aircraft

    A NEW SPEECH ENHANCEMENT TECHNIQUE USING PERCEPTUAL CONSTRAINED SPECTRAL WEIGHTING FACTORS

    Get PDF
    This paper deals with musical noise result from perceptual speech enhancement type algorithms and especially wiener filtering. Although perceptual speech enhancement methods perform better than the non perceptual methods, most of them still return annoying residual musical noise. This is due to the fact that if only noise above the noise masking threshold is filtered then noise below the noise masking threshold can become audible if its maskers are filtered. It can affect the performance of perceptual speech enhancement method that process audible noise only. In order to overcome this drawback here proposed a new speech enhancement technique. It aims to improve the quality of the enhanced speech signal provided by perceptual wiener filtering by controlling the latter via a second filter regarded as a psychoacoustically motivated weighting factor. The simulation results shows that the performance is improved compared to other perceptual speech enhancement method

    Resource Management in Fog Networking of Cloud Computing using KNN Algorithm

    Get PDF
    It is necessary to deploy any application in Cloud environment to reduce the investment cost, maintenance cost and licence of hardware/software. Keeping these benefits, it is advised to go for cloud computing environment for any application deployment. The major challenge in this environment is fault tolerance of resources to support for continuous availability of resources to client for working. Especially in IoT applications, we use Fog networking connecting to cloud computing. In this scenario, it is advised to use KNN (K- Nearest Neighbour) resource identification and allocation algorithm to increase the throughput to user requirement. We are presenting an approach to allocate the required resources with optimal distance resource allocation, so as to improve the throughput of user requirement

    Classification of Ultra Fine Particles from Fly Ash

    Get PDF
    The annual generation of coal combustion residue in the country is 110 MT. The generation of coal combustion residue is expected to increase with ever increasing demand for power. Management of this solid waste has been a great concern to the nation. Most of the reports on utilization of coal combustion residue are limited to direct usage of the material or selective collection from ESP fields in the thermal power plants. In this connection several efforts are being made in the country to enhance its application as a replacement to cement, soil modifier, roads and embankments etc. Very little or no research attempts are made in understanding the appropriate compo-nents which results in beneficial properties and value added products. Fly ash in very fine size range exhibits spherical morphological characteristics and thus acts as good fillers in rubber and polymer compounds. However, recovery of this size material from the bulk is yet a challenge in the process industry as the material forms clusters at very fine sizes. The present study is an atte-mpt to beneficiate fly ash to obtain material with an average particle size around 5 microns. A cyclone separa-tor, which employs very high g* forces for separation of particles is employed for achieving the separation. At this high g* forces, the declustering of particles is observed. This technique has generated product with an average particle size (ds& between 4 to 8 microns. The results obtained at different test runs are discussed

    Unsteady flow of a nanofluid over a sphere with nonlinear Boussinesq approximation

    Get PDF
    A theoretical study is presented of transient mixed convection boundary layer flow of a nanofluid in the forward stagnation region of a heated sphere which is rotating with time dependent angular velocity. The effect of the non-linear Boussinesq approximation is taken into account. The nanofluid is treated as a two-component mixture i.e. nano-particles distributed homogenously in a base fluid (water or gas). The effects of the Brownian motion and thermophoresis are included for the nanofluid and constant wall temperature is imposed at the sphere surface. The first and second laws of thermodynamics are employed in order to study thermophysics as well as heat and mass transfer phenomena. By introducing appropriate similarity variables the governing equations are transformed into a system of dimensionless, nonlinear, coupled, ordinary differential equations which are solved numerically by applying the second-order accurate implicit finite difference Keller box method. The reliability and efficiency of the obtained numerical results are validated via comparison with the previously published results for special cases. The effects of various parameters on primary and secondary velocities, temperature, nanofluid volume fraction (concentration), primary and secondary shear stress functions, Nusselt number function (wall heat transfer rate) and Sherwood number function (wall nanoparticle mass transfer rate) are visualized. Furthermore the influence of non-linear temperature parameter, Brinkman parameter (ratio of Brinkman number to dimensionless temperature ratio), local Reynolds number and unsteadiness parameter on entropy generation number is computed. A strong elevation in entropy generation number is computed with both increasing Brinkman parameter and unsteadiness parameter. Primary and secondary surface shear stresses, Nusselt number and Sherwood number also increase with unsteadiness and rotation parameters. Primary shear stress is boosted with increasing mixed convection parameter and Brownian motion effect whereas secondary shear stress is depressed. Temperatures are suppressed with increasing nonlinear temperature parameter whereas nano-particle concentrations are elevated. Increasing thermophoresis parameter enhances both temperatures and nano-particle concentration values. The simulations find applications in rotating chemical engineering mixing systems and nano-coating transport phenomena

    Geo-neutrinos: A systematic approach to uncertainties and correlations

    Get PDF
    Geo-neutrinos emitted by heat-producing elements (U, Th and K) represent a unique probe of the Earth interior. The characterization of their fluxes is subject, however, to rather large and highly correlated uncertainties. The geochemical covariance of the U, Th and K abundances in various Earth reservoirs induces positive correlations among the associated geo-neutrino fluxes, and between these and the radiogenic heat. Mass-balance constraints in the Bulk Silicate Earth (BSE) tend instead to anti-correlate the radiogenic element abundances in complementary reservoirs. Experimental geo-neutrino observables may be further (anti)correlated by instrumental effects. In this context, we propose a systematic approach to covariance matrices, based on the fact that all the relevant geo-neutrino observables and constraints can be expressed as linear functions of the U, Th and K abundances in the Earth's reservoirs (with relatively well-known coefficients). We briefly discuss here the construction of a tentative "geo-neutrino source model" (GNSM) for the U, Th, and K abundances in the main Earth reservoirs, based on selected geophysical and geochemical data and models (when available), on plausible hypotheses (when possible), and admittedly on arbitrary assumptions (when unavoidable). We use then the GNSM to make predictions about several experiments ("forward approach"), and to show how future data can constrain - a posteriori - the error matrix of the model itself ("backward approach"). The method may provide a useful statistical framework for evaluating the impact and the global consistency of prospective geo-neutrino measurements and Earth models.Comment: 17 pages, including 4 figures. To appear on "Earth, Moon, and Planets," Special Issue on "Neutrino Geophysics," Proceedings of Neutrino Science 2005 (Honolulu, Hawaii, Dec. 2005

    Antineutrinos from Earth: A reference model and its uncertainties

    Full text link
    We predict geoneutrino fluxes in a reference model based on a detailed description of Earth's crust and mantle and using the best available information on the abundances of uranium, thorium, and potassium inside Earth's layers. We estimate the uncertainties of fluxes corresponding to the uncertainties of the element abundances. In addition to distance integrated fluxes, we also provide the differential fluxes as a function of distance from several sites of experimental interest. Event yields at several locations are estimated and their dependence on the neutrino oscillation parameters is discussed. At Kamioka we predict N(U+Th)=35 +- 6 events for 10^{32} proton yr and 100% efficiency assuming sin^2(2theta)=0.863 and delta m^2 = 7.3 X 10^{-5} eV^2. The maximal prediction is 55 events, obtained in a model with fully radiogenic production of the terrestrial heat flow.Comment: 24 pages, ReVTeX4, plus 7 postscript figures; minor formal changes to match version to be published in PR
    • …
    corecore