12,734 research outputs found

    A Deep Pyramid Deformable Part Model for Face Detection

    Full text link
    We present a face detection algorithm based on Deformable Part Models and deep pyramidal features. The proposed method called DP2MFD is able to detect faces of various sizes and poses in unconstrained conditions. It reduces the gap in training and testing of DPM on deep features by adding a normalization layer to the deep convolutional neural network (CNN). Extensive experiments on four publicly available unconstrained face detection datasets show that our method is able to capture the meaningful structure of faces and performs significantly better than many competitive face detection algorithms

    Unconstrained Face Verification using Deep CNN Features

    Full text link
    In this paper, we present an algorithm for unconstrained face verification based on deep convolutional features and evaluate it on the newly released IARPA Janus Benchmark A (IJB-A) dataset. The IJB-A dataset includes real-world unconstrained faces from 500 subjects with full pose and illumination variations which are much harder than the traditional Labeled Face in the Wild (LFW) and Youtube Face (YTF) datasets. The deep convolutional neural network (DCNN) is trained using the CASIA-WebFace dataset. Extensive experiments on the IJB-A dataset are provided

    Sinking flux of particulate organic matter in the oceans: Sensitivity to particle characteristics

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Omand, M. M., Govindarajan, R., He, J., & Mahadevan, A. Sinking flux of particulate organic matter in the oceans: Sensitivity to particle characteristics. Scientific Reports, 10(1), (2020): 5582, doi:10.1038/s41598-020-60424-5.The sinking of organic particles produced in the upper sunlit layers of the ocean forms an important limb of the oceanic biological pump, which impacts the sequestration of carbon and resupply of nutrients in the mesopelagic ocean. Particles raining out from the upper ocean undergo remineralization by bacteria colonized on their surface and interior, leading to an attenuation in the sinking flux of organic matter with depth. Here, we formulate a mechanistic model for the depth-dependent, sinking, particulate mass flux constituted by a range of sinking, remineralizing particles. Like previous studies, we find that the model does not achieve the characteristic ‘Martin curve’ flux profile with a single type of particle, but instead requires a distribution of particle sizes and/or properties. We consider various functional forms of remineralization appropriate for solid/compact particles, and aggregates with an anoxic or oxic interior. We explore the sensitivity of the shape of the flux vs. depth profile to the choice of remineralization function, relative particle density, particle size distribution, and water column density stratification, and find that neither a power-law nor exponential function provides a definitively superior fit to the modeled profiles. The profiles are also sensitive to the time history of the particle source. Varying surface particle size distribution (via the slope of the particle number spectrum) over 3 days to represent a transient phytoplankton bloom results in transient subsurface maxima or pulses in the sinking mass flux. This work contributes to a growing body of mechanistic export flux models that offer scope to incorporate underlying dynamical and biological processes into global carbon cycle models.We thank NSF (OCE 1260080), NASA (NNX16AR48G), and the Ministry of Earth Sciences, Government of India (Monsoon Mission Project on the Bay of Bengal) for support. This work was largely done in 2012 while MMO was a postdoctoral associate at WHOI, during a visit by RG supported by The Mary Sears visiting scholar program to the Woods Hole Oceanographic Institution. Thanks also to Benjamin Hodges for many thoughtful contributions
    corecore