12,735 research outputs found
A Deep Pyramid Deformable Part Model for Face Detection
We present a face detection algorithm based on Deformable Part Models and
deep pyramidal features. The proposed method called DP2MFD is able to detect
faces of various sizes and poses in unconstrained conditions. It reduces the
gap in training and testing of DPM on deep features by adding a normalization
layer to the deep convolutional neural network (CNN). Extensive experiments on
four publicly available unconstrained face detection datasets show that our
method is able to capture the meaningful structure of faces and performs
significantly better than many competitive face detection algorithms
Unconstrained Face Verification using Deep CNN Features
In this paper, we present an algorithm for unconstrained face verification
based on deep convolutional features and evaluate it on the newly released
IARPA Janus Benchmark A (IJB-A) dataset. The IJB-A dataset includes real-world
unconstrained faces from 500 subjects with full pose and illumination
variations which are much harder than the traditional Labeled Face in the Wild
(LFW) and Youtube Face (YTF) datasets. The deep convolutional neural network
(DCNN) is trained using the CASIA-WebFace dataset. Extensive experiments on the
IJB-A dataset are provided
- …
