6,445 research outputs found
The frequency map for billiards inside ellipsoids
The billiard motion inside an ellipsoid Q \subset \Rset^{n+1} is completely
integrable. Its phase space is a symplectic manifold of dimension , which
is mostly foliated with Liouville tori of dimension . The motion on each
Liouville torus becomes just a parallel translation with some frequency
that varies with the torus. Besides, any billiard trajectory inside
is tangent to caustics , so the
caustic parameters are integrals of the
billiard map. The frequency map is a key tool to
understand the structure of periodic billiard trajectories. In principle, it is
well-defined only for nonsingular values of the caustic parameters. We present
four conjectures, fully supported by numerical experiments. The last one gives
rise to some lower bounds on the periods. These bounds only depend on the type
of the caustics. We describe the geometric meaning, domain, and range of
. The map can be continuously extended to singular values of
the caustic parameters, although it becomes "exponentially sharp" at some of
them. Finally, we study triaxial ellipsoids of \Rset^3. We compute
numerically the bifurcation curves in the parameter space on which the
Liouville tori with a fixed frequency disappear. We determine which ellipsoids
have more periodic trajectories. We check that the previous lower bounds on the
periods are optimal, by displaying periodic trajectories with periods four,
five, and six whose caustics have the right types. We also give some new
insights for ellipses of \Rset^2.Comment: 50 pages, 13 figure
CLASSICAL SPLITTING OF FUNDAMENTAL STRINGS
We find exact solutions of the string equations of motion and constraints
describing the {\em classical}\ splitting of a string into two. We show that
for the same Cauchy data, the strings that split have {\bf smaller} action than
the string without splitting. This phenomenon is already present in flat
space-time. The mass, energy and momentum carried out by the strings are
computed. We show that the splitting solution describes a natural decay process
of one string of mass into two strings with a smaller total mass and some
kinetic energy. The standard non-splitting solution is contained as a
particular case. We also describe the splitting of a closed string in the
background of a singular gravitational plane wave, and show how the presence of
the strong gravitational field increases (and amplifies by an overall factor)
the negative difference between the action of the splitting and non-splitting
solutions.Comment: 27 pages, revtex
Chains of Viscoelastic Spheres
Given a chain of viscoelastic spheres with fixed masses of the first and last
particles. We raise the question: How to chose the masses of the other
particles of the chain to assure maximal energy transfer? The results are
compared with a chain of particles for which a constant coefficient of
restitution is assumed. Our simple example shows that the assumption of
viscoelastic particle properties has not only important consequences for very
large systems (see [1]) but leads also to qualitative changes in small systems
as compared with particles interacting via a constant restitution coefficient.Comment: 11 pages, 6 figure
Hydrogen and muonium in diamond: A path-integral molecular dynamics simulation
Isolated hydrogen, deuterium, and muonium in diamond have been studied by
path-integral molecular dynamics simulations in the canonical ensemble.
Finite-temperature properties of these point defects were analyzed in the range
from 100 to 800 K. Interatomic interactions were modeled by a tight-binding
potential fitted to density-functional calculations. The most stable position
for these hydrogenic impurities is found at the C-C bond center. Vibrational
frequencies have been obtained from a linear-response approach, based on
correlations of atom displacements at finite temperatures. The results show a
large anharmonic effect in impurity vibrations at the bond center site, which
hardens the vibrational modes with respect to a harmonic approximation.
Zero-point motion causes an appreciable shift of the defect level in the
electronic gap, as a consequence of electron-phonon interaction. This defect
level goes down by 70 meV when replacing hydrogen by muonium.Comment: 11 pages, 8 figure
General Non-equilibrium Theory of Colloid Dynamics
A non-equilibrium extension of Onsager's canonical theory of thermal
fluctuations is employed to derive a self-consistent theory for the description
of the statistical properties of the instantaneous local concentration profile
n(r,t) of a colloidal liquid in terms of the coupled time evolution equations
of its mean value n(r,t) and of the covariance {\sigma}(r,r';t) \equiv
of its fluctuations {\delta}n(r, t) = n(r, t) -
n(r, t). These two coarse-grained equations involve a local mobility function
b(r, t) which, in its turn, is written in terms of the memory function of the
two-time correlation function C(r, r' ; t, t') \equiv <{\delta}n(r,
t){\delta}n(r',t')>. For given effective interactions between colloidal
particles and applied external fields, the resulting self-consistent theory is
aimed at describing the evolution of a strongly correlated colloidal liquid
from an initial state with arbitrary mean and covariance n^0(r) and
{\sigma}^0(r,r') towards its equilibrium state characterized by the equilibrium
local concentration profile n^(eq)(r) and equilibrium covariance
{\sigma}^(eq)(r,r').
This theory also provides a general theoretical framework to describe
irreversible processes associated with dynamic arrest transitions, such as
aging, and the effects of spatial heterogeneities
Studying polymer diffusiophoresis with non-equilibrium molecular dynamics.
We report a numerical study of the diffusiophoresis of short polymers using non-equilibrium molecular dynamics simulations. More precisely, we consider polymer chains in a fluid containing a solute that has a concentration gradient and examine the variation of the induced diffusiophoretic velocity of the polymer chains as the interaction between the monomer and the solute is varied. We find that there is a non-monotonic relation between the diffusiophoretic mobility and the strength of the monomer-solute interaction. In addition, we find a weak dependence of the mobility on the length of the polymer chain, which shows clear difference from the diffusiophoresis of a solid particle. Interestingly, the hydrodynamic flow through the polymer is much less screened than for pressure driven flows.European Union Grant No. 674979
Horizon 2020 program through 766972-FET-OPEN- NANOPHLOW
Canonical Melnikov theory for diffeomorphisms
We study perturbations of diffeomorphisms that have a saddle connection
between a pair of normally hyperbolic invariant manifolds. We develop a
first-order deformation calculus for invariant manifolds and show that a
generalized Melnikov function or Melnikov displacement can be written in a
canonical way. This function is defined to be a section of the normal bundle of
the saddle connection.
We show how our definition reproduces the classical methods of Poincar\'{e}
and Melnikov and specializes to methods previously used for exact symplectic
and volume-preserving maps. We use the method to detect the transverse
intersection of stable and unstable manifolds and relate this intersection to
the set of zeros of the Melnikov displacement.Comment: laTeX, 31 pages, 3 figure
Currentâvoltage curves of bipolar membranes
Bipolar membranes consist of a layered ionâexchange structure composed of a cation selective membrane joined to an anion selective membrane. They are analogous to semiconductor pân devices as both of them present currentâvoltage curves exhibiting similar rectification properties. In this article, we present some currentâvoltage curves obtained for different bipolar membranes at several temperatures. The results can be interpreted in terms of a simple model for ion transport and fieldâenhanced water dissociation previously developed. The mechanism responsible for water splitting is assumed to be a catalytic proton transfer reaction between the charged groups and the water at the membrane interface. The effects of temperature are taken into account by introducing an Arrheniusâtype relationship for the dependence of the forward rate constant of the reaction on temperature. Finally, comparison between theory and experiments provides reasonable values for the parameters introduced in the theoretical model. The analysis aims at developing a better physical understanding of a process in which chemical reactions and transport phenomena are coupled in such a way that the potential technological applications depend strongly on this [email protected]
The VLT-FLAMES Tarantula Survey XXI. Stellar spin rates of O-type spectroscopic binaries
The initial distribution of spin rates of massive stars is a fingerprint of
their elusive formation process. It also sets a key initial condition for
stellar evolution and is thus an important ingredient in stellar population
synthesis. So far, most studies have focused on single stars. Most O stars are
however found in multiple systems. By establishing the spin-rate distribution
of a sizeable sample of O-type spectroscopic binaries and by comparing the
distributions of binary sub-populations with one another as well as with that
of presumed single stars in the same region, we aim to constrain the initial
spin distribution of O stars in binaries, and to identify signatures of the
physical mechanisms that affect the evolution of the massive stars spin rates.
We use ground-based optical spectroscopy obtained in the framework of the
VLT-FLAMES Tarantula Survey (VFTS) to establish the projected equatorial
rotational velocities (\vrot) for components of 114 spectroscopic binaries in
30 Doradus. The \vrot\ values are derived from the full-width at half-maximum
(FWHM) of a set of spectral lines, using a FWHM vs. \vrot\ calibration that we
derive based on previous line analysis methods applied to single O-type stars
in the VFTS sample. The overall \vrot\ distribution of the primary stars
resembles that of single O-type stars in the VFTS, featuring a low-velocity
peak (at \vrot < 200 kms) and a shoulder at intermediate velocities (200 <
\vrot < 300 kms). The distributions of binaries and single stars however
differ in two ways. First, the main peak at \vrot \sim100 kms is broader and
slightly shifted toward higher spin rates in the binary distribution compared
to that of the presumed-single stars. Second, the \vrot distribution of
primaries lacks a significant population of stars spinning faster than 300 kms
while such a population is clearly present in the single star sample.Comment: 16 pages, 16 figures, paper accepted in Astronomy & Astrophysic
- âŠ