48 research outputs found

    Cardiac Myocytes and Mechanosensation

    Get PDF

    The Sarcomeric Z-Disc and Z-Discopathies

    Get PDF
    The sarcomeric Z-disc defines the lateral borders of the sarcomere and has primarily been seen as a structure important for mechanical stability. This view has changed dramatically within the last one or two decades. A multitude of novel Z-disc proteins and their interacting partners have been identified, which has led to the identification of additional functions and which have now been assigned to this structure. This includes its importance for intracellular signalling, for mechanosensation and mechanotransduction in particular, an emerging importance for protein turnover and autophagy, as well as its molecular links to the t-tubular system and the sarcoplasmic reticulum. Moreover, the discovery of mutations in a wide variety of Z-disc proteins, which lead to perturbations of several of the above-mentioned systems, gives rise to a diverse group of diseases which can be termed Z-discopathies. This paper provides a brief overview of these novel aspects as well as points to future research directions

    Genetics of Mechanosensation in the Heart

    Get PDF
    Mechanosensation (the ultimate conversion of a mechanical stimulus into a biochemical signal) as well as mechanotransduction (transmission of mechanically induced signals) belong to the most fundamental processes in biology. These effects, because of their dynamic nature, are particularly important for the cardiovascular system. Therefore, it is not surprising that defects in cardiac mechanosensation, are associated with various types of cardiomyopathy and heart failure. However, our current knowledge regarding the genetic basis of impaired mechanosensation in the cardiovascular system is beginning to shed light on this subject and is at the centre of this brief review

    MLP (muscle LIM protein) as a stress sensor in the heart

    Get PDF
    Muscle LIM protein (MLP, also known as cysteine rich protein 3 (CSRP3, CRP3)) is a muscle-specific-expressed LIM-only protein. It consists of 194 amino-acids and has been described initially as a factor involved in myogenesis (Arber et al. Cell 79:221–231, 1994). MLP soon became an important model for experimental cardiology when it was first demonstrated that MLP deficiency leads to myocardial hypertrophy followed by a dilated cardiomyopathy and heart failure phenotype (Arber et al. Cell 88:393–403, 1997). At this time, this was the first genetically altered animal model to develop this devastating disease. Interestingly, MLP was also found to be down-regulated in humans with heart failure (Zolk et al. Circulation 101:2674–2677, 2000) and MLP mutations are able to cause hypertrophic and dilated forms of cardiomyopathy in humans (Bos et al. Mol Genet Metab 88:78–85, 2006; Geier et al. Circulation 107:1390–1395, 2003; Hershberger et al. Clin Transl Sci 1:21–26, 2008; Knöll et al. Cell 111:943–955, 2002; Knöll et al. Circ Res 106:695–704, 2010; Mohapatra et al. Mol Genet Metab 80:207–215, 2003). Although considerable efforts have been undertaken to unravel the underlying molecular mechanisms—how MLP mutations, either in model organisms or in the human setting cause these diseases are still unclear. In contrast, only precise knowledge of the underlying molecular mechanisms will allow the development of novel and innovative therapeutic strategies to combat this otherwise lethal condition. The focus of this review will be on the function of MLP in cardiac mechanosensation and we shall point to possible future directions in MLP research

    Linear optics substituting scheme for multi-mode operations

    Get PDF
    We propose a scheme allowing a conditional implementation of suitably truncated general single- or multi-mode operators acting on states of traveling optical signal modes. The scheme solely relies on single-photon and coherent states and applies beam splitters and zero- and single-photon detections. The signal flow of the setup resembles that of a multi-mode quantum teleportation scheme thus allowing the individual signal modes to be spatially separated from each other. Some examples such as the realization of cross-Kerr nonlinearities, multi-mode mirrors, and the preparation of multi-photon entangled states are considered.Comment: 11 pages, 4 eps-figures, using revtex

    Antisense Therapy Attenuates Phospholamban p.(Arg14del) Cardiomyopathy in Mice and Reverses Protein Aggregation

    Get PDF
    Inherited cardiomyopathy caused by the p.(Arg14del) pathogenic variant of the phospholamban (PLN) gene is characterized by intracardiomyocyte PLN aggregation and can lead to severe dilated cardiomyopathy. We recently reported that pre-emptive depletion of PLN attenuated heart failure (HF) in several cardiomyopathy models. Here, we investigated if administration of a Pln-targeting antisense oligonucleotide (ASO) could halt or reverse disease progression in mice with advanced PLN-R14del cardiomyopathy. To this aim, homozygous PLN-R14del (PLN-R14 (Δ/Δ)) mice received PLN-ASO injections starting at 5 or 6 weeks of age, in the presence of moderate or severe HF, respectively. Mice were monitored for another 4 months with echocardiographic analyses at several timepoints, after which cardiac tissues were examined for pathological remodeling. We found that vehicle-treated PLN-R14 (Δ/Δ) mice continued to develop severe HF, and reached a humane endpoint at 8.1 ± 0.5 weeks of age. Both early and late PLN-ASO administration halted further cardiac remodeling and dysfunction shortly after treatment start, resulting in a life span extension to at least 22 weeks of age. Earlier treatment initiation halted disease development sooner, resulting in better heart function and less remodeling at the study endpoint. PLN-ASO treatment almost completely eliminated PLN aggregates, and normalized levels of autophagic proteins. In conclusion, these findings indicate that PLN-ASO therapy may have beneficial outcomes in PLN-R14del cardiomyopathy when administered after disease onset. Although existing tissue damage was not reversed, further cardiomyopathy progression was stopped, and PLN aggregates were resolved

    Inhibiting cardiac myeloperoxidase alleviates the relaxation defect in hypertrophic cardiomyocytes.

    Get PDF
    AIMS: Hypertrophic cardiomyopathy (HCM) is characterised by cardiomyocyte hypertrophy and disarray, and myocardial stiffness due to interstitial fibrosis, which result in impaired left ventricular filling and diastolic dysfunction. The latter manifests as exercise intolerance, angina, and dyspnoea. There is currently no specific treatment for improving diastolic function in HCM. Here, we investigated whether myeloperoxidase (MPO) is expressed in cardiomyocytes and provides a novel therapeutic target for alleviating diastolic dysfunction in HCM. METHODS AND RESULTS: Human cardiomyocytes derived from control induced pluripotent stem cells (iPSC-CMs) were shown to express MPO, with MPO levels being increased in iPSC-CMs generated from two HCM patients harbouring sarcomeric mutations in the MYBPC3 and MYH7 genes. The presence of cardiomyocyte MPO was associated with higher chlorination and peroxidation activity, increased levels of 3-chlorotyrosine-modified cardiac myosin binding protein-C (MYBPC3), attenuated phosphorylation of MYBPC3 at Ser-282, perturbed calcium signalling, and impaired cardiomyocyte relaxation. Interestingly, treatment with the MPO inhibitor, AZD5904, reduced 3-chlorotyrosine-modified MYBPC3 levels, restored MYBPC3 phosphorylation, and alleviated the calcium signalling and relaxation defects. Finally, we found that MPO protein was expressed in healthy adult murine and human cardiomyocytes, and MPO levels were increased in diseased hearts with left ventricular hypertrophy. CONCLUSION: This study demonstrates that MPO inhibition alleviates the relaxation defect in hypertrophic iPSC-CMs through MYBPC3 phosphorylation. These findings highlight cardiomyocyte MPO as a novel therapeutic target for improving myocardial relaxation associated with HCM, a treatment strategy which can be readily investigated in the clinical setting, given that MPO inhibitors are already available for clinical testing. TRANSLATIONAL PERSPECTIVE: There are currently no specific therapies for improving diastolic function in patients with HCM. We show for the first time that myeloperoxidase (MPO) is present in and is up-regulated in cardiomyocytes derived from human iPSCs obtained from HCM patients, where it impairs cardiomyocyte relaxation by reducing phosphorylation of cardiac MYBPC3. Treatment with the MPO inhibitor, AZD5904, restored MYBPC3 phosphorylation and alleviated the relaxation defect, demonstrating cardiomyocyte MPO to be a novel therapeutic target for improving diastolic function in HCM, a treatment strategy which can be evaluated in HCM patients given that MPO inhibitors are already available for clinical testing

    Tcap gene mutations in hypertrophic cardiomyopathy and dilated cardiomyopathy

    Get PDF
    ObjectivesWe sought to explore the relationship between a Tcap gene (TCAP)abnormality and cardiomyopathy.BackgroundHypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) cause severe heart failure and sudden death. Recent genetic investigations have revealed that mutations of genes encoding Z-disc components, including titin and muscle LIM protein (MLP), are the primary cause of both HCM and DCM. The Z-disc plays a role in establishing the mechanical coupling of sarcomeric contraction and stretching, with the titin/Tcap/MLP complex serving as a mechanical stretch sensor. Tcap interacts with the calsarcin, which tethers the calcineurin to the Z-disc.MethodsThe TCAPwas analyzed in 346 patients with HCM (236 familial and 110 sporadic cases) and 136 patients with DCM (34 familial and 102 sporadic cases). Two different in vitro qualitative assays—yeast two-hybrid and glutathion S-transferase pull-down competition—were performed in order to investigate functional changes in Tcap's interaction with MLP, titin, and calsarcin-1 caused by the identified mutations and a reported DCM-associated mutation, R87Q.ResultsTwo TCAPmutations, T137I and R153H, were found in patients with HCM, and another TCAPmutation, E132Q, was identified in a patient with DCM. It was demonstrated by the qualitative assays that the HCM-associated mutations augment the ability of Tcap to interact with titin and calsarcin-1, whereas the DCM-associated mutations impair the interaction of Tcap with MLP, titin, and calsarcin-1.ConclusionsThese observations suggest that the difference in clinical phenotype (HCM or DCM) may be correlated with the property of altered binding among the Z-disc components

    Myosin binding protein C: implications for signal-transduction

    Get PDF
    Myosin binding protein C (MYBPC) is a crucial component of the sarcomere and an important regulator of muscle function. While mutations in different myosin binding protein C (MYBPC) genes are well known causes of various human diseases, such as hypertrophic (HCM) and dilated (DCM) forms of cardiomyopathy as well as skeletal muscular disorders, the underlying molecular mechanisms remain not well understood. A variety of MYBPC3 (cardiac isoform) mutations have been studied in great detail and several corresponding genetically altered mouse models have been generated. Most MYBPC3 mutations may cause haploinsufficiency and with it they may cause a primary increase in calcium sensitivity which is potentially able to explain major features observed in HCM patients such as the hypercontractile phenotype and the well known secondary effects such as myofibrillar disarray, fibrosis, myocardial hypertrophy and remodelling including arrhythmogenesis. However the presence of poison peptides in some cases cannot be fully excluded and most probably other mechanisms are also at play. Here we shall discuss MYBPC interacting proteins and possible pathways linked to cardiomyopathy and heart failure
    corecore