265 research outputs found

    Crosstalk between the mTOR and DNA Damage Response Pathways in Fission Yeast

    Get PDF
    Cells have developed response systems to constantly monitor environmental changes and accordingly adjust growth, differentiation, and cellular stress programs. The evolutionarily conserved, nutrient-responsive, mechanistic target of rapamycin signaling (mTOR) pathway coordinates basic anabolic and catabolic cellular processes such as gene transcription, protein translation, autophagy, and metabolism, and is directly implicated in cellular and organismal aging as well as age-related diseases. mTOR mediates these processes in response to a broad range of inputs such as oxygen, amino acids, hormones, and energy levels, as well as stresses, including DNA damage. Here, we briefly summarize data relating to the interplays of the mTOR pathway with DNA damage response pathways in fission yeast, a favorite model in cell biology, and how these interactions shape cell decisions, growth, and cell-cycle progression. We, especially, comment on the roles of caffeine-mediated DNA-damage override. Understanding the biology of nutrient response, DNA damage and related pharmacological treatments can lead to the design of interventions towards improved cellular and organismal fitness, health, and survival

    Advances in Epigenetic Cancer Therapeutics

    Get PDF
    Cancer has traditionally been hailed a genetic disease, dictated by successive genetic aberrations which alter gene expression. Yet, recent advances in molecular sequencing technologies, enabling the characterisation of cancer patient phenotypes on a large scale, have highlighted epigenetic changes as a hallmark of cancer. Epigenetic modifications, including DNA methylation and demethylation and histone modifications, have been found to play a key role in the pathogenesis of a wide variety of cancers through the regulation of chromatin state, gene expression and other nuclear events. Targeting epigenetic aberrations offers remarkable promise as a potential anti-cancer therapy given the reversible nature of epigenetic changes. Hence, epigenetic therapy has emerged as a rapidly advancing field of cancer research. A plethora of epigenetic therapies which inhibit enzymes of post-translational histone modifications, so-called ‘writers’, ‘erasers’ and ‘readers’, have been developed, with several epigenetic inhibitor agents approved for use in routine clinical practice. Epigenetic therapeutics inhibit the methylation or demethylation and acetylation or deacetylation of DNA and histone proteins. Their targets include writers (DNA methyltransferases [DNMT], histone acetyltransferases [HAT] and histone deacetylases [HDAC]) and erasers (histone demethylases [HDM] and histone methylases [HMT]). With new epigenetic mechanisms increasingly being elucidated, a vast array of targets and therapeutics have been brought to the fore. This review discusses recent advances in cancer epigenetics with a focus on molecular targets and mechanisms of action of epigenetic cancer therapeutics

    TORC1 signaling inhibition by rapamycin and caffeine affect lifespan, global gene expression, and cell proliferation of fission yeast.

    Get PDF
    Target of rapamycin complex 1 (TORC1) is implicated in growth control and aging from yeast to humans. Fission yeast is emerging as a popular model organism to study TOR signaling, although rapamycin has been thought to not affect cell growth in this organism. Here, we analyzed the effects of rapamycin and caffeine, singly and combined, on multiple cellular processes in fission yeast. The two drugs led to diverse and specific phenotypes that depended on TORC1 inhibition, including prolonged chronological lifespan, inhibition of global translation, inhibition of cell growth and division, and reprograming of global gene expression mimicking nitrogen starvation. Rapamycin and caffeine differentially affected these various TORC1-dependent processes. Combined drug treatment augmented most phenotypes and effectively blocked cell growth. Rapamycin showed a much more subtle effect on global translation than did caffeine, while both drugs were effective in prolonging chronological lifespan. Rapamycin and caffeine did not affect the lifespan via the pH of the growth media. Rapamycin prolonged the lifespan of nongrowing cells only when applied during the growth phase but not when applied after cells had stopped proliferation. The doses of rapamycin and caffeine strongly correlated with growth inhibition and with lifespan extension. This comprehensive analysis will inform future studies into TORC1 function and cellular aging in fission yeast and beyond

    Prospects of Pharmacological Interventions to Organismal Aging

    Get PDF
    Intense research in the areas of cellular and organismal aging using diverse laboratory model systems has enriched our knowledge in the processes and the signalling pathways involved in normal and pathological conditions. The field finds itself in a position to take decisive steps towards clinical applications and interventions not only for targeted age-related diseases such as cardiovascular conditions and neurodegeneration but also for the modulation of health span and lifespan of a whole organism. Beyond nutritional interventions such as dietary restriction without malnutrition and various regimes of intermittent fasting, accumulating evidence provides promise for pharmacological interventions. The latter, mimic caloric or dietary restriction, tune cellular and organismal stress responses, affect the metabolism of microbiome with subsequent effects on the host or modulate repair pathways, among others. In this mini review, we summarise some of the evidence on drugs that can alter organismal lifespan and the prospects they might offer for promoting healthspan and delaying age-related diseases

    Influence of Branching on the Rheology, Filmability and Mechanical and Optical Properties of a Biodegradable and Compostable Co-Polyester

    Get PDF
    Over the last years, bio-based and biodegradable alternatives have gained considerable attention both of academic and of packaging industrial communities, driven by recent legislation and increasing awareness concerning environmental issues related to traditional plastic. However, it is often observed that packaging products made from bioplastics do not exhibit comparable performance to those produced using common non-biodegradable ones. The presence of long chain branching improves the processing behavior under elongational flow and, then, the filmability of low viscosity polymers such as polyesters. In this work it has been demonstrated that the presence of long chain branching in a bio-co-polyester, induced by the use of pentaerythritol in the synthesis a of poly(butylene adipate-co-butylene terephthalate), is able to dramatically change the rheological behavior of the linear chain polyester improving its filmability. The addition of branching lead to an increase of the elastic modulus and the tensile strength in branched polyester films if compared to the linear ones, while the elongation at break decreased. This is due to the answer of the branched polyester to the non-isothermal elongational flow that allows a better orientation of the macromolecules of the branched polyester. The film obtained with the branched polyester showed a decrease in clarity and a slight increase in haze if compared to linear one due to differences in the morphology of the two samples

    Amino acids whose intracellular levels change most during aging alter chronological lifespan of fission yeast

    Get PDF
    Amino acid deprivation or supplementation can affect cellular and organismal lifespan, but we know little about the role of concentration changes in free, intracellular amino acids during aging. Here, we determine free amino-acid levels during chronological aging of non-dividing fission yeast cells. We compare wild-type with long-lived mutant cells that lack the Pka1 protein of the protein kinase A signalling pathway. In wild-type cells, total amino-acid levels decrease during aging, but much less so in pka1 mutants. Two amino acids strongly change as a function of age: glutamine decreases, especially in wild-type cells, while aspartate increases, especially in pka1 mutants. Supplementation of glutamine is sufficient to extend the chronological lifespan of wild-type but not of pka1Δ cells. Supplementation of aspartate, on the other hand, shortens the lifespan of pka1Δ but not of wild-type cells. Our results raise the possibility that certain amino acids are biomarkers of aging, and their concentrations during aging can promote or limit cellular lifespan
    • …
    corecore