2 research outputs found

    Retrofitting Heat Exchanger Network of Industrial Ethylene Glycol Plant using Heat Integration based on Pinch Analysis

    No full text
    Heat integration by pinch method is used to modify the heat exchanger network of an industrial ethylene glycol plant. The aim is to reduce the energy cost by operating the plant close to the maximum energy recovery. Pinch analysis identified a pinch temperature of 483 K, a minimum heating utility of 13,490.9 MJ/ton EO, and a minimum cooling utility of 25,697 MJ/ton EO. Using the pinch decomposition diagram and the standard procedure for matching hot and cold streams, a retrofit of the heat exchangers network is developed. The modified heat exchanger network reduces the external cooling duty by 45.5% and the external heating duty by 93.3%. This promising cost savings provide enough justification for restructuring the existing ethylene glycol plant. Moreover, an additional 6% reduction in the external cooling duty can be achieved by integrating the steam turbine below the pinch point

    Deep Eutectic Solvents for the Separation of Toluene/1-Hexene via Liquid–Liquid Extraction

    No full text
    The separation of aromatic/olefin mixtures is a difficult task in the petrochemical industry, since the boiling points of these hydrocarbons are very similar. This work aims to use deep eutectic solvents (DESs) for the extraction of toluene from 1-hexene by liquid–liquid extraction. A total of 53 DESs were studied qualitatively and quantitatively using the COSMO-RS approach to separate the binary mixture of toluene and 1-hexene. The selectivity, capacity, and performance index of all DESs were evaluated by calculating the activity coefficient at infinite dilution. The σ-profile and σ-potential of each component were interpreted to evaluate the interactions between the different species. We then selected three DESs for experimental validation, namely benzyltriphenylphosphonium chloride:triethylene glycol BzTPPCl:TEG (1:8), tetrabutylammonium bromide:triethylene glycol TBABr:TEG (1:3), and tetrabutylammonium bromide:ethylene glycol TBABr: EG (1:4). Experimental liquid–liquid equilibrium data were obtained for the ternary mixtures {1-hexene (1) + toluene (2) + DES (3)} at T = 298.15 K and atmospheric pressure. Based on the selectivity data and the solute distribution ratio, the feasibility of different DESs as extractive solvents was tested. Finally, 1H NMR was performed to elucidate the extraction mechanism. No DES was found in the raffinate phase, indicating minimal cross-contamination
    corecore