25 research outputs found
MicroRNA Profiling in Ocular Adnexal Lymphoma: A Role for MYC and NFKB1 Mediated Dysregulation of MicroRNA Expression in Aggressive Disease
Citation: Hother C, Rasmussen PK, Joshi T, et al. MicroRNA profiling in ocular adnexal lymphoma: a role for MYC and NFKB1 mediated dysregulation of microRNA expression in aggressive disease. Invest Ophthalmol Vis Sci. 2013;54:5169-5174. DOI: 10.1167/iovs.13-12272 PURPOSE. Ocular adnexal lymphoma (i.e., lymphoma with involvement of the orbit, eyelids, conjunctiva, lacrimal gland, and lacrimal sac), although rare, is common among malignant tumors involving the ocular adnexal region. The main subtypes are low-grade extranodal marginal zone lymphoma (EMZL) and aggressive diffuse large B-cell lymphoma (DLBCL). In rare cases, low-grade EMZL are reported to transform to DLBCL. It is unclear, however, which genetic events distinguish low-grade disease from aggressive, potentially fatal disease. METHODS. Using LNA-based arrays from Exiqon, we performed global microRNA (miRNA) expression profiling of 18 EMZLs and 25 DLBCLs involving ocular adnexal sites to investigate changes in the miRNA expression in low-versus high-grade disease. Findings were confirmed by real-time quantitative PCR (RTq-PCR). RESULTS. Our analysis revealed 43 miRNAs with altered expression profiles in DLBCL compared to EMZL. Seven of the miRNAs down-regulated in DLBCL relative to EMZL showed enrichment for a direct transcriptional repression by the oncoprotein MYC. We also report a possible loss-of-regulation of NFKB1 and its downstream miRNAs. In addition, our analysis identified a group of DLBCLs whose expression profiles resembled that of EMZL. Although transformation of EMZL to DLBCL in the ocular adnexal region is rare, we hypothesize that the intermediate group potentially may derive from transformation of EMZL that was not recognized by histology. CONCLUSIONS. We conclude that fundamental differences in miRNA expression exist between ocular adnexal EMZL and DLBCL, mainly due to differences in MYC and NF-+B regulatory pathways
Genome-wide profiling identifies a DNA methylation signature that associates with TET2 mutations in diffuse large B-cell lymphoma
The discovery that the Ten-Eleven Translocation (TET) hydroxylases cause DNA demethylation has fundamentally changed the notion of how DNA methylation is regulated. Clonal analysis of the hematopoetic stem cell compartment suggests that TET2 mutations can be early events in hematologic cancers and recent investigations have shown TET2 mutations in diffuse large B-cell lymphoma. However, the detection rates and the types of TET2 mutations vary, and the relation to global methylation patterns has not been investigated. Here, we show TET2 mutations in 12 of 100 diffuse large B-cell lymphomas with 7% carrying loss-of-function and 5% carrying missense mutations. Genome-wide methylation profiling using 450K Illumina arrays identified 315 differentially methylated genes between TET2 mutated and TET2 wild-type cases. TET2 mutations are primarily associated with hypermethylation within CpG islands (70%; P<0.0001), and at CpG-rich promoters (60%; P<0.0001) of genes involved in hematopoietic differentiation and cellular development. Hypermethylated loci in TET2 mutated samples overlap with the bivalent (H3K27me3/H3K4me3) silencing mark in human embryonic stem cells (P=1.5×10(−30)). Surprisingly, gene expression profiling showed that only 11% of the hypermethylated genes were down-regulated, among which there were several genes previously suggested to be tumor suppressors. A meta-analysis suggested that the 35 hypermethylated and down-regulated genes are associated with the activated B-cell-like type of diffuse large B-cell lymphoma in other studies. In conclusion, our data suggest that TET2 mutations may cause aberrant methylation mainly of genes involved in hematopoietic development, which are silenced but poised for activation in human embryonic stem cells