16 research outputs found
The reliability and usability of the Anesthesiologists’ Non-Technical Skills (ANTS) system in simulation research
Background: Non-technical skills (NTS) such as leadership and team work are important in providing good quality of care. One system to assess physicians’ NTS is the Anesthesiologists’ Non-Technical Skills (ANTS) system. The present study evaluates the ANTS system on the interrater reliability and usability for research purposes. Methods: Ten anesthesiologists and 20 anesthesiology residents performed two resuscitation scenarios (with and without the presence of distractors) in a simulation room with a full-scale patient simulator. The scenarios were videotaped. Two independent raters rated the NTS of the anesthesiologists using the ANTS system. The intraclass correlation coefficients (ICC) were calculated to determine the interrater reliability of both the total NTS score and the measured differences between the two scenarios. The raters filled out a questionnaire to obtain insights in the usability of the ANTS system for research purposes. Results: The ICC for the total score of the NTS was substantial (0.683), and the ICC of the elements varied between 0.371 for assessing capabilities and 0.670 for providing and maintaining standards. The intraclass correlation coefficient of measuring differences was fair (0.502). The raters judged the usability as good. Conclusions: The ANTS system was reliable for the total score and usable to measure physicians’ NTS in a research setting. However, there was variation between the reliability of the elements. We recommend that if the ANTS is used for research, a pilot study should determine elements not applicable or observable in the scenario of interest; these elements should be excluded from the study.</p
The reliability and usability of the Anesthesiologists’ Non-Technical Skills (ANTS) system in simulation research
Background: Non-technical skills (NTS) such as leadership and team work are important in providing good quality of care. One system to assess physicians’ NTS is the Anesthesiologists’ Non-Technical Skills (ANTS) system. The present study evaluates the ANTS system on the interrater reliability and usability for research purposes. Methods: Ten anesthesiologists and 20 anesthesiology residents performed two resuscitation scenarios (with and without the presence of distractors) in a simulation room with a full-scale patient simulator. The scenarios were videotaped. Two independent raters rated the NTS of the anesthesiologists using the ANTS system. The intraclass correlation coefficients (ICC) were calculated to determine the interrater reliability of both the total NTS score and the measured differences between the two scenarios. The raters filled out a questionnaire to obtain insights in the usability of the ANTS system for research purposes. Results: The ICC for the total score of the NTS was substantial (0.683), and the ICC of the elements varied between 0.371 for assessing capabilities and 0.670 for providing and maintaining standards. The intraclass correlation coefficient of measuring differences was fair (0.502). The raters judged the usability as good. Conclusions: The ANTS system was reliable for the total score and usable to measure physicians’ NTS in a research setting. However, there was variation between the reliability of the elements. We recommend that if the ANTS is used for research, a pilot study should determine elements not applicable or observable in the scenario of interest; these elements should be excluded from the study.</p
Variation and adaptation: learning from success in patient safety-oriented simulation training
Simulation is traditionally used to reduce errors and their negative consequences. But according to modern safety theories, this focus overlooks the learning potential of the positive performance, which is much more common than errors. Therefore, a supplementary approach to simulation is needed to unfold its full potential. In our commentary, we describe the learning from success (LFS) approach to simulation and debriefing. Drawing on several theoretical frameworks, we suggest supplementing the widespread deficit-oriented, corrective approach to simulation with an approach that focusses on systematically understanding how good performance is produced in frequent (mundane) simulation scenarios. We advocate to investigate and optimize human activity based on the connected layers of any setting: the embodied competences of the healthcare professionals, the social and organizational rules that guide their actions, and the material aspects of the setting. We discuss implications of these theoretical perspectives for the design and conduct of simulation scenarios, post-simulation debriefings, and faculty development programs
Non-Technical Skills Bingo—a game to facilitate the learning of complex concepts
Acquiring the concepts of non-technical skills (NTS) beyond a superficial level is a challenge for healthcare professionals and simulation faculty. Current simulation-based approaches to teach NTS are challenged when learners have to master NTS concepts, clinically challenging situations, and simulation as a complex technique. The combination of all three aspects might overwhelm learners. To facilitate the deeper comprehension of NTS concepts, we describe an innovative video-based game, the Non-Technical Skills (NTS) Bingo. Participants get NTS Bingo cards that show five NTS elements each. While observing (non-medical) video clips, they try to find examples for the elements on their cards, typically observable behaviours that match a given element. After the video, participants " defend " their solution in a discussion with the game leader and other players. This discussion and the reflection aim to deepen the processing of the NTS concepts. We provide practical guidance for the conduct of NTS Bingo, including a selection of usable video clips and tips for the facilitated discussion after a clip. We use NTS in anaesthesia as example and provide guidance on how to adapt NTS Bingo to other disciplines. NTS Bingo is based on theoretical considerations on concept learning, which we describe to support the rationale for its conduct
Adaptive Prozessführung für die Zerspanung
Since a direct measurement of occurring process fluctuations, such as tool wear or microstructure and allowance fluctuations, is not possible, it is necessary to use indirect measurement variables for information acquisition. These can be, for example, the torque-forming current of the main spindle or, in machines where several tools are simultaneously engaged (multi-channel machines), such as machines with two tool slides, the torque-forming current of the feed axes. Due to the interaction between the process conditions and the signals evaluated during the process, the process status can be continuously characterized and influenced by the control system. The subject of the invention is a novel system for adaptive process control, which operates on the principle of processing the internal drive signals of machine control systems. With the help of this system, unproductive air cuts due to safeties in approach and overflow paths can be minimized and fluctuations in dimensions and microstructure and process instabilities of the running machining can be detected. This makes it possible to always regulate to the maximum of the permissible process parameters - an optimization of productivity and an increase in process stability are the consequences. Furthermore, continuous monitoring and control allows longer tool life due to the prevention of premature tool wear
Portable Blood (Gas) Analyzer in a Helicopter Emergency Medical Service
Introduction: In prehospital helicopter emergency medical services (HEMS), the medical team frequently manages critical patients with only limited, noninvasive monitoring options on-site and during HEMS transport. To gain deeper insight into the patient's pathology and to track prehospital treatment effects, a point-of-care blood (gas) analyzer appears desirable also in HEMS. Thus, we hypothesized that prehospital blood (gas) analysis is feasible in the HEMS setting. Methods: A prehospital evaluation of a portable blood (gas) analyzer (i-Stat 1; Abbott, Chicago, IL) with appropriate laboratory cartridges was performed within the Dutch HEMS Lifeliner 1, serving a region of ∼4.5 million inhabitants. Venous blood (gas) measurements were performed in our HEMS collective in both trauma and nontrauma cases. Results: The HEMS team identified benefits (eg, portability and speed) and limitations (eg, a narrow operational temperature range) regarding the tested blood (gas) analyzer. Regarding the actual blood (gas) results, the team collected results without major abnormalities but also cases identifying major pathologies, including several cases of marked acidosis, refractory hypoglycemia, or severe anemia. Conclusion: In conclusion, portable blood (gas) analysis proved feasible in an HEMS operation but with relevant limitations. Future studies will have to show how these limitations can be overcome and how the implementation of portable blood (gas) analyzers may support improved patient outcome
Effects of post-scenario debriefing versus stop-and-go debriefing in medical simulation training on skill acquisition and learning experience: a randomized controlled trial
BACKGROUND: Debriefing is a critical component to promote effective learning during simulation-based training. Traditionally, debriefing is provided only after the end of a scenario. A possible alternative is to debrief specific portions during an ongoing simulation session (stop-and-go debriefing). While this alternative has theoretical advantages, it is not commonly used due to concerns that interruptions disturb the fidelity and adversely affect learning. However, both approaches have not been rigorously compared, and effects on skill acquisition and learning experience are unknown. METHODS: We randomly assigned 50 medical students participating in a simulation-based cardiopulmonary resuscitation training to either a post-scenario debriefing or stop-and-go debriefing. After four weeks, participants performed a repeat scenario, and their performance was assessed using a generic performance score (primary outcome). A difference of 3 or more points was considered meaningful. A 5-item questionnaire was used to assess the subjective learning experience and the perceived stress level (secondary outcomes). RESULTS: There was no significant difference between the groups for the performance score (mean difference: -0.35, 95%CI: -2.46 to 1.77, P = 0.748, n = 48). The confidence limits excluding the specified relevant 3-point difference suggest equivalence of both techniques with respect to the primary outcome. No significant differences were observed for secondary outcomes. CONCLUSIONS: Stop-and-go debriefing does not adversely affect skill acquisition compared to the classic post-scenario debriefing strategy. This finding is reassuring when interruptions are deemed necessary and gives simulation instructors the latitude to tailor the timing of the debriefing individually, rather than adhering to the unsupported dogma that scenarios should not be interrupted. TRIAL REGISTRATION: As this study is not a clinical trial, it was not registered in a clinical trials register
Additional file 1: of Non-Technical Skills Bingo—a game to facilitate the learning of complex concepts
Non-Technical Skills Bingo Cards. (DOCX 96 kb
Learning about stress from building, drilling and flying: a scoping review on team performance and stress in non-medical fields
Background: Teamwork is essential in healthcare, but team performance tends to deteriorate in stressful situations. Further development of training and education for healthcare teams requires a more complete understanding of team performance in stressful situations. We wanted to learn from others, by looking beyond the field of medicine, aiming to learn about a) sources of stress, b) effects of stress on team performance and c) concepts on dealing with stress.
Methods: A scoping literature review was undertaken. The three largest interdisciplinary databases outside of healthcare, Scopus, Web of Science and PsycINFO, were searched for articles published in English between 2008 and 2020. Eligible articles focused on team performance in stressful situations with outcome measures at a team level. Studies were selected, and data were extracted and analysed by at least two researchers.
Results: In total, 15 articles were included in the review (4 non-comparative, 6 multi- or mixed methods, 5 experimental studies). Three sources of stress were identified: performance pressure, role pressure and time pressure. Potential effects of stress on the team were: a narrow focus on task execution, unclear responsibilities within the team and diminished understanding of the situation. Communication, shared knowledge and situational awareness were identified as potentially helpful team processes. Cross training was suggested as a promising intervention to develop a shared mental model within a team.
Conclusion: Stress can have a significant impact on team performance. Developing strategies to prevent and manage stress and its impact has the potential to significantly increase performance of teams in stressful situations. Further research into the development and use of team cognition in stress in healthcare teams is needed, in order to be able to integrate this ‘team brain’ in training and education with the specific goal of preparing professionals for team performance in stressful situations